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ABSTRACT

A current trend in radar technology is automatic detection and tracking systems.

An integral part of these automatic systems is the CFAR (Constant False Alarm Rate)

detector. A CFAR detector is the signal processing algorithm that controls the rate at

which target detections are falsely declared. Given the current state of radar technology,

CFAR algorithms are necessary elements of any automatic radar system. Unfortu-
nately, CFAR systems are inherently vulnerable to degradation caused by large clutter

edges, multiple targets and jamming environments.
This thesis presents eight popular and studied CFAR architectures. A comprehen-

sive review of each system's structure, analysis and performance is detailed. Also the

performance of each CFAR processor for two differenct inphase (I) and quadrature (Q)

detectors: envelope approximation detector and the square law detector are compared

numerically. In addition, each system is comprehensively compared to one another in

the troublesome environments mention above.
This thesis continues with the development of an original CFAR architecture, the

excision greatest-of (EXGO). Although more complex, this processor is shown to be
more robust than the other established techniques particularly in the prescence of clutter

edges, multiple targets, and electronic countermeasures (ECM) environments.
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THESIS DISCLAIMER

The reader is cautioned that computer programs developed in this research may not

have been exercised for all cases of interest. While every effort has been made, within

the time available, to ensure that the programs are free of computational and logic er-

rors, they cannot be considered validated. Any application of these programs without

additional verification is at the risk of the user.
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1. INTRODUCTION

A. CFAR BACKGROUND

The primary task of any radar system is to detect all objects in some area of obser-

vation and to estimate their position. One current trend in carrying out this task is au-

tomatic detection and tracking systems. This trend is driven by the demands of users

who place a premium on data acquisition systems which provide rapid, highly accurate

information. The basic precept of an automatic detection radar is the elimination of the

human operator who was solely responsible for target detection. Early radar systems

were designed to route all incoming information directly to the users video display.

Clutter, noise and target amplitude variations were all displayed simultaneously. Target

detection was therefore delegated to a highly trained operator who usually distinguished

targets from interfering background noise, clutter and possibly electronic jamming. The

requirement to replace the human operator involved factors such as operator fatigue,

saturation and reaction time. Studies have shown that an operator can simultaneously

track only a few targets accurately for any extended period of time. As the weakest link

in the target detection and tracking problem, the human operator has been replaced by

advanced digital signal processing technologies that satisfy the intense requirements of

todays radar users.

Automatic target detection and tracking would be a simple task if the echoing object
was always located in the clear. In this case, the signal received could simply be com-

pared with some fixed threshold and targets declared whenever the signal exceeds this

threshold. In actual application however, the target generally appears before a back-

ground filled with complicated clutter types and various sources of noise interference

including jamming energies. It is clear that an automatic radar must have some means

of false target rejection that was previously delegated to the skilled operator. The signal

processing system that completes this task is known as the Constant False Alarm Rate

(CFAR) processor. Simply put, the CFAR processor is an algorithm used by automatic

detection radars to control the rate at which target detections are falsely declared. The

ideal CFAR detector would be one which maximizes the probability of detection of a

target when it does appear and minimizes the probability of false alarm caused by noise

and clutter when no target is present. Unfortunately both problems cannot be optimized

simultaneously. The best the CFAR algorithm can do is keep the false alarm rate at



some tolerable level as the background clutter changes while accepting the resulting

change in signal detection probability.

As necessary as CFAR algorithms are in todays multi-function radars, a price must

be paid for the control of the false alarm rate. CFAR algorithms reduce the radars

probability of detection by increasing signal-to-noise ratio (SNR) requirements, and can

also severely degrade a systems range resolution capabilities. One of the more serious

drawbacks of CFAR processing is its inherent susceptibility to various types of Elec-

tronic Countermeasures (ECM).

B. PRINCIPAL CONTRIBUTIONS

The principal contributions of this thesis lie in the area of CFAR signal processing.

The first contribution is a presentation of the weaknesses and vulnerabilities of the most

popular CFAR architectures on a common ground (including jamming). The probabil-

ity of false alarm and probability of detection performance for each CFAR is compared

using both an envelope approximation detector and a square law detector. In this

manner, the implications of using a less complex detector can be evaluated. The com-

prehensive knowledge derived from this investigation is then applied as a stepping stone

toward the design of an original CFAR system suggested by the author. This new

CFAR architecture called excision greatest-of (EXGO) is shown to be robust in all op-

erating scenarios including ECM.

C. THESIS OUTLINE

The intended breadth of this thesis is from a clear explanation of the most basic

CFAR function to the creation of an original and complex CFAR detector. Chapter II
begins with a comprehensive glossary of many CFAR related terms used in the subse-

quent chapters. A description of a generic CFAR device is then presented. This de-

scription covers the various subfunctions found in almost all CFAR systems. The

second chapter concludes with a discussion of the statistical techniques used to describe

the capabilities and performance of CFAR systems. Chapter III introduces the inherent
vulnerability of CFAR algorithms. By covering this material early in the thesis, the

reader can better appreciate the complex tradeoffs required in CFAR design. Chapter

IV comprehensively covers the eight popular CFAR detectors. The capabilities of each

detector will be carefully described. Stressed here are the adaptive threshold approach

to managing the false alarm problem. Other approaches such as clutter mapping and

non-parametric detectors are also introduced in less detail. The performance of these

eight CFAR algorithms are compared using both square law and an envelope approxi-

2



mation detectors. Chapter V then compares the major CFAR families with the intent

of finding the best CFAR algorithm for some particular application. The systems are

compared under three operating conditions. These conditions are homogeneous noise,

clutter edges and multiple target environments. Chapter VI presents new results relating

to the creation of an original and robust CFAR system. In this chapter the envelope

approximation detector system is studied to determine the best coefficients for the ap-

proximation for the new CFAR system developed. In Chapter VII the new CFAR sys-

tem operation and performance is discussed. Also, the new detector is compared to

other CFAR architectures showing relative capabilities.

3



I11. GENERAL CFAR CONCEPTS

A. INTRODUCTION

This chapter is designed so that a reader can easily discern the important elements
and theory of CFAR algorithms. A comprehensive set of applicable CFAR related ter-

minology is included. These definitions will serve as a basis of understanding for the
entire thesis. The chapter will also introduce general approaches that radar engineers

use when deciding on which CFAR processor best suits their particular need. A simple,

generic Adaptive Threshold CFAR processor will then be covered. All the important

elements that adaptive threshold CFAR algorithms employ will be described in detail.

A clear understanding of these subelements will be critical in determining a CFAR sys-

tems operating characteristics and capabilities. This chapter will end with a discussion

of CFAR system performance criteria and design criteria that will be followed when

analyzing the many CFAR architectures discussed in this thesis.

B. DEFINITIONS.

The following definitions form a basic glossary of detection and data processing

terms. The knowledge of these terms is required for an easy understanding of this thesis.

This glossary was taken in part from Schlehers work [Ref. 11.

1. Adaptive Threshold CFAR
A processor which provides a constant false alarm rate (CFAR) in a varying

nonhomogeneous clutter and noise interference environments by adaptively ad-
justing the detection threshold. The procedure assumes that the general form of
the interference's probability distribution is known except for a small number of
unknown parameters. The unknown parameters are estimated on a cell-to-cell
basis by examining the reference cells surrounding the cell under test. The resulting
estimated ,aterference probability distribution function is then used in each test cell
to obtain a threshold setting that provides the desired false alarm rate.

2. Automatic Detection Radar
In an automatic detection radar, the target reports are formed in the radar's

signal processor before interaction with a human operator o: further data process-
ing. The function of the automatic detector is to process the high bandwidth raw
radar return, which is usually contaminated with many forms of interference, and
to extract the low bandwidth target reports with a minimal number of false reports.
The automatic detection process places stringent requirements on the design of ra-
dars incorporating this feature wit.i particular emphasis on the signal processing
function.

4



Clutter is delined as a conglomeration of unwanted radar cchoes. Surface or
arva clutter consists of reflections from distributed surfaces intercepted by tlc radar
;'ufcnna'% mainbcam and sidclobes. Discrete clutter is returned from stationarv
o h 1 -(.tv such as water towers, building-; and other unwanted fixed targets. and call
11c verv large. Volumnetric clutter is ref lected firom weather, chaffI, anld other atmno-
qjhetrc disturbances. Angel clutter is prinmarily reflected from birds and insects, and

(-;in bec verY disturbing. Clutter is character i7ed by its mean or medianj equivalent
backscattciing cross-section. amplitude probability density function and its powcr
speictral densilty or equivalent autocorrelation function.

4. ('FAR Loss
(TAR loss is defined as the loss of detection sensitivity caused by the efkct

of the CFAR processor on the signal or the detection threshold. In general, the
(TARI loss is a function of the number of' reference cells used to estimlate the un-
known rarameters, the design probabilities of detection and false alarm, the numi-
her of integrated pulses an-d the probability density function of the interference.
Figure I jf~cf' 21 illustrates thc relative decrease in CFAR loss in d8l (for a Cell
Averaging system) as the numibcr of reference cells used in thc noise estimation
process increase at various False alarm rates. jRef. 31 is the impact CFAR loss has
on SNR requirementq.

32

.16_ _

8

"PFA

% ~10-11

Number of reference Cells. M

Uigtire 1. CF'AR Loss
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A nonlinear device followed by a low-pass filter which extracts the envelope
of the high-frequency carrier. The envelope detector ignores any phase information
contained in the carrier and hence provides only amplitude video information.

6. False Alarm
An erroneous radar target detection decision caused by noise or other inter-

fering signals exceeding the detection threshold. In radar statistical theory, the
decision domain is divided into a decision between the hypothesis of noise or that
of signal-plus-noise. The decision boundary is formed by the threshold level de-
termined by the desired false alarm probability. A type I error or false alarm occurs
when the threshold level is exceeded and the noise-only hypothesis is in effect.

7. Monte Carlo Simulation
The technique of selecting numbers randomly from one or more probability

distributions for use in a particular trial or run in a simulation study. The system
or process to be studied is represented by a model which defines over time its es-
sential characteristics. The model may be manipulated in ways impossible or im-
practical to perform on the system being represented. The dynamics of the
behavior of the system under study may be inferred by the operation of the model.

8. Moving Window Detector
A scanning radar detector which accumulates the last n radar return pulses

within each range resolution cell. This is accomplished computationally through
formation of the running sum of n radar pulses by adding the latest pulse to the
accumulator while subtracting the pulse which occurred n PRI periods in the past.

9. Target Fluctuation
Variation in the amplitude of the target signal, caused by the changes in target

aspect angle, rotation, or vibration of target scattering sources, or changes in radar
wavelength.

C. CFAR APPROACHES

The overall CFAR process consists of a series of techniques used by automatic de-

tection radar systems to control the rate at which target declarations are falsely declared.

It is the statistical nature of the radar background that makes a number of false alarms

inevitable. These background interferers arise from receiver noise, clutter (land, sea, and

rain), ECM (chaff and jamming), and interference from neighboring radars. When au-

tomatic detection is performed in homogeneous and nonhomogeneous clutter and noise

environments a combination of actions are taken in the radar to lessen the false alarm

effect. The hardware subsystems that reduce false alarms include [Ref. 41:

6



"* Transmitter:
Waveform selection and frequency agility.

"* Antenna:
Control of sidelobe patterns.

"* Receiver:
Rejection of wideband interference, matched filters, and Sensitivity Time Con-

trol (STC)

"* Signal Processor:
Moving Target Indicator (MTI), clutter sensors, and doppler filters.

"* Detection and Data Extraction:
Adaptive Thresholding, Nonparametric and Clutter Map CFAR.

This thesis will focus on the detection and data extraction systems of the radar. In

relation to CFAR, these are the most direct methods of controlling the false alarm rate.

There are three main approaches to handle the detection and data extraction portion of

the CFAR problem. They include Adaptive Threshold, Non-parametric Thresholding,

and Clutter Mapping CFAR. Adaptive Thresholding and Non-parametric detectors are

based on the assumption that homogeneity exists in range around the cell under test.

These are therefore spatially significant techniques. The Adaptive Threshold technique

assumes that the noise background/density is known except for a few unknown param-

eters. The neighboring reference cells are then used to estimate the unknown parame-

ters. A variety of CFAR designs are addressed in this category. They differ in principal

according to the assumptions which are made regarding the characteristics of the back-

ground noise and the parameters chosen to satisfy the requirements of implementation.

These different architectures estimate the mean level of the noise differently since the

target, clutter and noise can take on various temporal and spatial distributions. Non-

Parametric detectors obtain a regulated false alarm rate by ranking the reference cells.

Under the hypothesis that all the reference cell samples are independent samples from

some unknown density function, the test sample has some uniform density function and

consequently some threshold level which yields CFAR. Clutter Maps, which are

temporal CFAR systems store average background levels in numerous range-azimuth

cells. If new updated levels exceed the average background by some specified amount,

a target is declared in that range-azimuth cell. Each of these three major CFAR ap-

proaches will be further described later in the thesis with the emphasis on the Adaptive

Thresholding detectors.
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D. A GENERIC ADAPTIVE THRESHOLD PROCESSOR

Adatpli'e Thresholding CFAR detectors share common processor subclcments. In

-igure 2. many of these important parts are shown operating together as part of a gc-

neric CFAR Adaptive rhreshold system. The major subelements include the input en-

velope detector (such as linear-law, square-law or envelope approximation) , a sliding

rcercnce window that covers the leading and lagging sets of reference cells (called

neighboihood I and 2), the threshold multiplier (T), and finally a comparator that

compares the cell under test (identified as Y) with the system estimate of the noise power

level. A discussion of these major subelements follow.

V,

F igure 2. Generic CFAR Detector

1. System Input

A basic problem that CFAP, systems overcome is graphically depicted in Figure
3. 1 lere a sequence of one dimensional samples representing radar pulse return energy
levels from various ranges or azimuths is shown. The peaks in the data samples indicate
the possible presence of targets dispersed with background clutter and noise. Informa-
tion of this type forms a steady stream of data into the CFAR processing unit which
must determine which neaks are actual targets and which peaks are false alarms.

8



I

Figure 3. CFAR Data Stream

2. Input Detectors

The operation that frequently occurs in radar signal processing is the computa-

tion of the magnitude of the input complex sample stream. The processing of both the

in-phase (I) and quadrature (Q) channels generally allows for an exact representation

of the signal with no loss of sensitivity. Various choices of magnitude detection schemes

are available to the radar engineer to best manipulate the I and Q information. Figure

2 depicts three common envelope detector choices. The square-law envelope detector

estimates the magnitude as:

R= 12 +Q 2 .

The linear-law envelope detector estimates the magnitude as:

R = J1 2 + Q2  2

Since the digital computation of the square root of the sum of squares of the quadrature

components is a complex task, many approximations to the envelope detector have

evolved which are linear combinations of the quadrature components. Filip Ilef. 51 has

shown there are 13 useful approximations which have been devised to satisfy various

critcria. The envelope approximation detector estimates the magnitude as:

R = a x Ma.LJlll,IQII + b x Minllll,IQII 3
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where a and b are scaling values. Tables I thru 3 describe the output Probability Den-

sity Functions of noise and signal plus noise for each of the detectors assuming that the

input noise is normally distributed N(0,1). More information concerning input detectors

will be covered in Chapter VI.

Table 1. PDFS FOR A TEST AND REFERENCE CELL FOR A SQUARE LAW
DETECTOR

Detector Output 12 + 2

Noise Only PDF P,(r) expx x ;0

Signal Plus Noise ![( -x -]
PDF Psn~(I)-( + SNR) ep(I + SNR)__

Table 2. PDFS FOR A TEST AND REFERENCE CELL FOR AN ENVELOPE
DETECTOR

Detector Output 2 + 2

Noise Only PDF r2 2
p,,(r) = 7- exp -r

Signal Plus 2 2
Noise PDF P,,(r) =r exp -(r +A rA

A = amplitude

10 = Modified Besselfunction of order 0

fl = standard deviation of noise
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Table 3. PDFS FOR A TEST AND REFERENCE CELL FOR AN ENVELOPE
APPROXIMATION DETECTOR

Detector Output a x max [111, 1Q11 + b x min 1111, IQ11

Noise Only PDF = CeIJ@[ /(X)) + (X))]U(X)

C=-_f2 2

2 2 2

D(x) =- • X
22 2b 2(a 2 +b')a +b

b x

2(x)= .2-- 2 + b2

12 atb

Signal Plus
Noise PDF Phn(c) = C1 {eD¢x)[c) - ( 2)] + e- )]

+ eF(X)[CtA 5) - 4)(f6)]) + C2{eG(x)ECI(f 7) + 8(/)]}

(Table Continued)



Signal Plus
Noise PDF C2 =

2 2ýa b

- (au1 + bp2 -z) 2

D(x) = a+b
a 2 + b 2

-- (aA, -b/1 2 + Z)2
E(x)- a=b

a2 + b2

2 2 
2 A2 2 z 2  (b211 + abpU2 + az)2

F(x) -IAI -U 12 -b b7+ ab2 2 b4

S2 • z2 (-b 2  U2+ ab 2 + az)2

G(x) t, I-A2 b bs + a2b2 + b4

- aby, + a 2p2 + bz

a~a 2 + b2

2-- b21, + abgU2 - az
f b" a+b 2

A abp1 + a 2A2 + bz
2 2Sc •a2"-

A b 2b, + abIA2 - az

ba2 +b2

2
b :.Ll + abp2 + az

b a2 +b 2

(Table Continued)
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Signal Plus
Noise PDF A aby, + a u2 - bz

(Cont.) 2 2
a ,a' +b

-2A, 2A2 . 2z
A a + b b 2

2 +
2 2 +

Fa b21 11

2'•+ x b(abjL1-a p+bz)
2 2

A$ Fa b a12 + b2)

Al = ISNR x cos(O)

02 = jSNR x sin(O)

3. Reference Cells
In our generic CFAR system, the sampled signals in range are the input to the

reference cells. These neighboring cells yield an estimate of the true noise level in the

cell under test (identified as Y). By estimating the nearby noise levels, one can determine

the amplitude difference between the test cell and its neighboring cells and thereby de-

termine if a target is present.

Often the two reference cells that are immediately adjacent to the cell under test

are considered guard cells. A closer look at the guard cells is shown in Figure 4. These

cells are often used to ensure that signal energy of the test cell does not spill into the

adjacent cells and affect the noise power estimate. Guard cell values are therefore ig-

nored in many Adaptive Threshold processors. Another question that often arises is

whether or not the test cell itself should be included in the noise estimation. Physically

speaking, the implementation of the system is often simpler if the cell under test is in-

cluded in the estimate. Unfortunately, the statistical representation and theoretical

analysis of a CFAR processor is much easier when the test cell is excluded. Studies

however, have shown that the exclusion of the test cell from the reference cell summa-

tion can be used to accurately predict the performance of a system that physically in-

13



clude% the test cell. A slight modification to the system threshold value and proper

choice of the number of reference cells to average are sufficient for accurate predictions.

test cell
gulard cells

M " I Y ••,AX. -I

N *Mfernc* wdONw cells

Figure 4. Rererence Guard Cells

One of the more important considerations in Adaptive Threshold CFAR archi-

tectures is the appropriate choice of the number of reference cells to use. It is easily

shown that as the number of cells utilized in the estimate of the mean clutter level in-

creases, the probability of target detection approaches that of the optimum detector

where the mean level of the clutter plus noise is known a priori [gef. 61. A tradeoff

however must be considered since too many reference cells results in greater signal

processing time as well as an increase in the probability of entering or crossing a clutter

edge region. This is a result of an increased physical size of the reference cell region.

Also of concern is that the likelihood that an interfering target or a large clutter return

entering the reference window increases with a larger choice for M (total number of

cells). Another important consideration is that a high number of reference cell samples

will result in the inevitable violation of the assumption that the noise samples are iden-

tically distributed over the entire reference window. A desirable goal is to use enough

reference cells so that the CFAR loss is less than 1 dB, and at the same time not let the

reference cells spatially extend beyond one nautical mile on either side of the cell under

test IRef. 71.

4. Noise Estimate Calculation

The calculation of an estimate of the mean noise power (Z) can be accomplished

by a great variety of techniques. It is the estimation process itself that differentiates the

various CFAR processors. The type of processing done here is highly dependent of the

specific clutter and interference models assumed, particularly in a non-homogeneous

environment. Chapter IV deals specifically with the varieties of clutter and noise esti-

mation techniques.
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5. Thresholding

A desirable CFAR scheme is one whose probability of false alarm is insensitive

to changes in the noise power within the reference cells. In this case, the optimum de-

tector sets a fixed threshold to determine the presence of a target under the assumption

that the total homogeneous noise power mean is known a priori. In reality, the calcu-

lation of the threshold must not only make an allowance for the specified probability

of false alarm but also for the varying clutter power in the reference window. In the

presence of clutter, a fixed threshold results in an enormous number of detections and

will possibly saturate the data processing capability of an automatic tracking system.

In fact, any small increase in total noise power can result in a corresponding increase

of several orders of magnitude in the false alarm probability [Ref. 81. Figure 5 shows the

probability of false alarm as a function of the increase in noise power density for a fixed

threshold. As shown, the false alarm rate increases by a factor 10,000 for only a 3 dB

increase in the noise power density when a fixed threshold is set. A solution to this

problem is to use adaptive thresholding techniques (CFAR) that adjust the threshold

value in the presence of interference to maintain some specified false alarm rate. This

adjustment is accomplished by multiplying the reference cell noise estimate by some

scaling factor. The value of the scaling factor is carefully chosen by the system engineer

to manipulate the noise level estimate so that a con .tant false alarm rate is maintained.
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Figure 5. Fixed 11reshold Loss

Source: Levanon, N. Radar Principals , pp. 226, John Wiley and Sons, N.Y., 1988

A graphical display of the thresholding concept is shown in Figures 6a and 6b.

In 6a, the threshold value is set at a level above all but the two highest receiver output

peaks so that any signals that exceed the threshold are assumed to be targets. In this

scenario we have one missed target and one false alarm. Clearly, a decrease in the

threshold level will increase the probability of detection but also result in an increase in

the false alarm rate. In Figure 6b, it is shown that the lowered threshold results in one

false alarm, yet also yields a 100% detection rate.

a. Signal-to-Noise Ratio (SNR)

SNR is the ratio of average signal power to noise variance or noise power

IRef. 9j. Although the SNR is not directly manipulated or controlled by a CFAR sys-

tem, it plays a very important role in CFAR system performance. Referring again to

Figure 6a, it can readily be seen that if the SNR of the input were higher, (implying
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Figure 6. Adaptive Threshold

larger signal peaks) then the smaller target return would cross the original threshold

value and result in a higher probability of detection. This fact shows the three way de-

pcndcnce bctwee:i SNR, threshold values and detection probability. Mathematically,
A2

SNR is the ratio oi average signal power (-i), to the noise variance or noise power

(I?').

SNR = A 4
2112
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6. Comparator

This is the final subelement of our Generic CFAR detector. The role of the

comparator is simply to determine the relationship between the adaptive threshold level

and the cell under test (Y) in determining the existence of a target. In expression form

we have

H,

y ý< TZ. 5
HO

The comparator compares the cell under test with the threshold value (TZ) where T is

a selected threshold multiplier that ensures that design false alarm rates are achieved,

and Z is the noise estimate derived from the neighboring reference cells. The notation

H, denotes the presence of a target in the test cell while Ho is the null hypothesis (noise

only).

E. DETECTION STRATEGY AND PERFORMANCE CRITERIA

Early in the design of a radar system an appropriate performance criteria must be

created for the systems-unique detection problem. This will serve the radar engineer in

three ways. First, it sets a focus toward the desired properties of the system, it forces

the design engineer to set up quantitative measures on which to base the design, and

finally gives rise to specific detector structures that can be implemented or with which

other suboptimum schemes can be compared.

The design of CFAR processor for use in radars that operate in clutter, interference,

and jamming environments require careful consideration of many factors which will af-

fect the systems performance. CFAR processor designs are always a compromise be-

tween hardware complexity, CFAR loss and CFAR performance. Some of the factors

or limitations used in the development of a detection strategy are

"* least average CFAR loss

"* small SNR ratios for detections at long ranges

"• hardware and software constraints

"• processing speeds

"• information storage capacities

"* ability to contain the false alarm rate in the presence of jamming
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A simple truth of CFAR is that in high clutter and jamming environments, the funda-

mental purpose of the detection strategy must be the control of the false alarm rate over

a wide range of variations; even at the expense of detections.

Many computation methods and models have been used to obtain performance

characteristics of CFAR techniques. Usually each method was developed for a specified

type of fluctuating target. Methods include direct numerical integration, Edgeworth se-

ries, recursive methods, Monte Carlo techniques, and interpolation based on curve fit-

tings. When using models to estimate CFAR detector capabilities two main concepts

must be remembered. First, that the model chosen in designing CFAR detectors will

significantly affect detector performance, particularly when statistical uncertainty exists.

Secondly, that it is impossible to describe all radar working conditions into a simple

model which will inevitably lead to system estimation errors.

For the purpose of this thesis and the examination of the many CFAR algorithms

available today, three scenarios will be analyzed. The Gaussian noise scenario, the

clutter edge scenario and the multiple target situation. These scenarios will be used to

evaJuate the performance of the most popular CFAR algorithms on a common ground.

These conditions represent the three most important environments for the CFAR

processor and can either occur naturally or be artificially generated by a jammer (ECM).

The Gaussian noise model describes the situation where the radar is thermally noise

limited. In such a model there are two interesting cases. The first is when the target is

in the clear but the reference cells have background noise, and the second is when there

is uniform background noise over the entire reference window (including the test cell).

In both situations the assumption is made that the cells of the reference window are in-

dependent and contain the same statistics. The clutter edge model is used to describe

and study transition areas between regions with very different noise characteristics.

These transitions occur naturally and can be found throughout the reference window.

Various distributions including log normal, Weibull, and the K distribution can be used

to represent clutter edging. Lastly, the multiple target situation occurs occasionally in

radar signal processing when two or more targets are at a similar range. The consequent

masking of one target by the other is called suppression.

F. CFAR STATISTICS - PROBABILITY OF DETECTION AND FALSE ALARM

The radar target detection process is inherently probabilistic or statistical in nature.

This is due to actual targets being intermixed with randomly fluctuating noise levels.

Often it impossible to ascertain if an increase in receiver output is the result of a target
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appearance or the result of noise activity. It is possible however, to declare probabilities
for this detection process and establish some quantitative values. As defined earlier, the

probability of detection (P,) is the probability that the signal when present is detected.
The probability that some noise fluctuation will be mistaken for a target is called the

probability of false alarm (PA,). These two values form the foundation for CFAR sta-
tistics and analysis.

As shown previously in Figure 6(a), the threshold value is characterized by a voltage
1V, (from Figure 2 V, - T x Z), which when exceeded results in target declaration. There
is always a probability that this threshold voltage will be exceeded when no real target

is present. The probability of false alarm can be found from the equation

P fa =vpfn(v) dv, 6

where pj(v) is the probability density function (PDF) of the noise. The probability of
detection is given by the similar expression as the PDF is that of the signal and noise

combined

P, = J Psn(v) dv. 7
V,

Figure 7 details an example of these two PDFs that overlap each other. From this plot
we can easily see the P,, region where the noise statistics are greater than the threshold
level. Also it is clear that some actual targets are below the threshold level and are not

detected giving a P,, less than 1.0. The signal plus noise PDF (p,,) depends on the SNR
as well as the signal and noise statistics. Thus, the single pulse detection probability can
be also expressed as a function of the signal to noise ratio. For example, with envelope
detected input the single pulse probability of detection can be described as

V, I
= [-I - 4)( - - (SNR)T)J. 8
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III. CFAR ARCHITECTURE VULNERABILITY

A. INTRODUCTION
As necessary as CFAR algorithms are in automatic detection and tracking radar

systems, a loss is incurred with their use. A price is be paid for the elimination of the

human operator. CFAR algorithms are not the quick fix a casual reader of the literature

may assume. There are real costs incurred at various levels among the numerous CFAR

algorithms available today. The causes of CFAR limitations will be discussed in detail

in this chapter and will form a knowledge base to be referenced when comparing CFAR

systems. The major problem areas include errant operational environment assumptions

made by the radar engineer, clutter sources and edges, and the multiple target situation.

Also, the powerful effect ECM has on CFAR will be covered. Electronic jamming has

the unique capability to replicate at will, those conditions that naturally plague CFAR

algorithms. The loss effects incurred by CFAR detectors include decreased SNR re-

sulting in a loss in system P,. In sum, one can claim that the CFAR action may 'sup-

press' many real targets in its quest for false alarm control.

B. VULNERABILITIES

1. Operational Assumptions

The design of the detector for a CFAR system significantly affects CFAR per-

formance. The general operational assumptions made in most CFAR algorithms is that

noise and clutter energies found in the reference windows fall into one of two categories.

First is that the noise is homogeneous, where the statistical parameters of each cell are

identical [Ref. 10]. Second, that the interference fields are heterogeneous (fields having
widely dissimilar elements); yet the functions controlling these parameters are known a

priori [Ref, 11]. Clearly, in actual operation these conditions are violated; that is, the

interference environment is mismatched yielding interference statistics that differ from

the assumed model. In this case it can be shown that system performance significantly

degrades, the false alarm rate is no longer maintained and serious target masking may

be introduced. Another general assumption is that no other signals except receiver noise

are present in the neighboring reference cells. Clearly this assumption is often violated

as well in any dense operating environment. Also many types of clutter, particularly

clutter with high specular reflectors or only a few dominant scatters have been known

to cause significant deviation from model values. The presence of these strong signals
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in the reference cells has a serious affect on system performance particularly if the

interferers are stronger than the desired signal.

2. Clutter and Edging

Background reflectors, undesirable as they are from the standpoint of detection

and tracking, are generally denoted by the term clutter. Clutter, which tends to occur

in contiguous patches forms the basis for non-homogeneity in the system background.

Continuously distributed in the form of a rain cloud, or manifested as spikes in individ-

ual cells. Non-uniform, strong clutter is one of the most severe problems for CFAR al-

gorithms [Ref. 121. Clutter is generally comprised of a continuum of scatterers, from

discrete quasi-specular to distributed and diffuse [Ref. 131. Discrete sources are water

towers, buildings, sea waves and small hills. Distributed sources are sea echo and rain.

Table 4 gives four popular density functions for characterizing clutter. Figure 8 displays

these clutter areas and highlights the differing statistical distribution each contains. The

figure displays the space -time characterization of clutter data which can be seen as ei-

ther a succession of spatial snapshots or a bundle of temporal sequences. It is worth

noting that temporal distribution and correlation are relevant for the temporal CFAR

approach (Clutter Maps) and that the corresponding spatial characteristics apply to the

spatial thresholding approaches (Mean Level Detector CFAR).

The clutter edging concept is the effect where within a very small range interval

clutter levels vary drastically. As shown by Nathanson [Ref. 141 rain, a common clutter

source, can change intensity from approximately 4 cm/hour to over 16 cmnhour and

back to 4 cm'hour within a one mile range interval. This rate of change of results in a

clutter return power as high as 60 dB/mile making for a very large clutter edge.
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Table 4. FOUR POPULAR CLUTTER DISTRIBUTIONS
Distribution Expression
Rayleigh p(A) = A exp -A2 AZO

7o, -ýA2p A) - x 2Ao0  A

A = amplitude

2A0 = average RCS

W eibull P(A) =' -C "1T c' xp A)

A = signal amplitude

B = scaling parameter

C = slope parameter

Log Normal
____ - ( In . )

p(A) = P/-exp 28

o-= mean

f = standard deviation

A = amplitude

K-Distribution
p(A) = -- x( { ~)c~c-.BA)

A = signal amplitude

KC_1 =a modified Bessel function

B = scaling parameter

C = slope parameter
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Two clear effects of clutter and edging on CFAR systems are apparent. First,
if the cell undcr test is in the clear while the reference cells are immersed in clutter, a
masking effect results. That is, the adaptive threshold level is increased unnecessarily

and thcrefore the P, along with the Po are reduced significantly. This will occur even
though there may be a high SNPR in the cell of interest. The second case occurs when

the reference cells are in the clear but the test cell is immersed in the clutter. In this

condition, the P., will increase. IRef. I5J

In terms of Naval radar operation, one must recognize that sea clutter is inher-
ently different from land clutter in two basic ways. First, the temporal variations of the
clutter tend to be larger in magnitude, and second the spatial variations tend to be

smaller. A smooth sea forward-scatters incident energy so that little is reflected back to
the radar, I lo wever, the likelihood of having a glassy sea at any given time is quite

small, so backscattered energy is normally received. Levels of backscattcred energy are

directly linked to wave action and is a function of surface roughness. Radar backscatter

can occur from the sides of waves as well as the small facets superimposed on the waves.

These are a function of wind.
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Numerous models detailing rain, land and sea clutter levels have been devised.

These models can serve the radar engineer in determining optimal CFAR system char-

acteristics based on anticipated geographical environmental conditions. [Ref. 9]

3. Multiple Target Situations

Closely separated targets are probable in military operating environments. A

dense target situation occurs whenever two targets come close in range and azimuth even

when clearly separated by elevation. In this common scenario, both the target returns

will be contained in one reference window and possibly even in a single reference cell

[Ref. 161. If two targets are in the same cell, they are unresolved and act like one target.

This situation may lead to two undesirable effects. First, if both returns are co-located
in the same reference cell, some CFAR algorithms would reject that cell as a large clutter

return and effectively reject both targets. A second and more common effect of inter-

fering targets in the reference cells is the erroneous behavior of the adaptive threshold

level. This is due to the interfering target increasing the systems adaptive threshold since

the interferences are assumed to a legitimate noise samples. In many CFAR applica-

tions the presence of a strong ret urn among the reference cclls can cause a drastic re-

duction in system P. [Ref. 171.

4. Jamming

a. Basics

The basic purpose of Electronic Countermeasures is to introduce signals

into an enemies electronic systems which degrade the performance of the system so that

it is unable to carry out its intended mission. Certain forms of ECM or jamming tech-

niques are uniquely devastating to some CFAR signal processing algorithms and clearly

abuse their weaknesses to unanticipated noise and multiple target situations.

There are two fundamental ways to introduce jamming energy into a radar

system. First the receiver noise level can be raised through the injection of external noise

through the radars antenna. This jamming can be entered into either the radar's antenna

mainlobe or sidelobe. This jamming effects Adaptive Threshold CFAR systems by in-

creasing the voltage threshold. Noise jamming has the effect of obscuring the radar

target by effectively immersing it in noise. The second and more complex jamming

technique forces spurious signals into the radars mainlobe or sidelobes to confuse or

deceive the system. This has the effect of introducing false targets into the reference cells

simulating one or more interferers. In both cases, the previously discussed vulnerabili-

ties to clutter and multiple targets are the clear aim of the jammers. [Ref. 181
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b. Noise Jammers

Basic noise jammers can be broken down into different categories such as
spot, obscuration or broadband jammers. Spot jamming occurs when only a small

bandwidth is covered by the jammer, whereas the broadband jammer dilutes the power
density over a large bandwidth. This enables a greater portion of the electromagnetic
spectrum to be jammed at the expense of effective radiated power (ERP).

The effect of noise jamming on radars that use CFAR adaptive thresholding
is the reduction of the detection probability while the system maintains the preset false

alarm rate. This effect on the Pd is the result of a grossly inflated adaptive threshold level
influenced by the jammer noise energies. This degrades the radar system performance.

c. False Target Jamming

A comprehensive coverage of various False Target Generating (FTG) tech-
niques will not be covered here. The many differences among the FTG systems makes
it difficult to describe them beyond some simple generalizations. In a generic sense, the

use of FTGs creates transitory false targets that quickly appear and disappear at seem-

ingly random ranges and angles of arrival. With the advent of sophisticated smart
jamming systems (those with Electronic Support Measurement (ESM) systems inte-

grated with the ECM units) the FTGs are capable of repeating ideal waveforms at exact
radar pulse repetition intervals (PRI). In this scenario, not only are the false targets
more realistic but the jamming may be more effective to an unprepared radar since it
uses the non-coherent integration gain of the radar to increase the jamming effectiveness

[Ref. 19].
5. Discussion

Improvement in target detection brought about through clutter suppression and

Electronic Counter-Countermeasures (ECCM) can be effected through technical ad-
vances or the removal of errant assumptions by the radar engineer. As Figure 8 shows,

the probabilistic models of clutter amplitudes change with environmental conditions.

The characterization and understanding of radar clutter and its effect on performance is
absolutely essential if the radar designer is able to accurately predict expected system

performance. Therefore, in order to make proper model assumptions it will be necessary

to identify differing clutter types and to be able to describe then properly such as type,

size, borders, power and spectral features [Ref. 16]. The attempt must be to understand

the operating environment of a particular system instead of simply trying to suppress
undesirable energy returns. Unfortunately, the evolution of CFAR algorithms has not

taken this approach. Rather new algorithms take advantage of more efficient technol-

27



taken this approach. Rather new algorithms take advantage of more efficient technol-

ogies and techniques to incrementally improve CFAR performance. These improve-

ments, which are sometimes quite effective' have the cost of additional system

complexity, processing time, and cost.
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IV. CFAR ARCHITECTURES

A. INTRODUCTION

As indicated earlier, each CFAR system has its own characteristic method for esti-

mating the noise as well as its own method for determining the adaptive threshold level

based on that estimate. This chapter describes eight of the most popular CFAR archi-

tectures. Information on how the systems operate, how they determine their threshold

levels, their performance plots and a discussion of their inherent weaknesses and

strengths will be detailed. The adaptive threshold systems will be broken down into two

major categories: Mean Level Detectors and Ranked Order Detectors. Also included in

this chapter will be a discussion of Non-Parametric and Clutter Mapping CFAR tech-

niques. These are non-adaptive threshold systems that have merit and deserve attention.

B. MEAN LEVEL CFAR PROCESSORS

In this section three mean level algorithms are discussed. They are the Cell-

Averaged (CA), the Greatest-Of (GO), and Smallest-Of (SO) CFAR systems The deri-

vation of the probability of false alarm and probability of detection using square-law

detection are given for each processor. Probability of false alarm and detection plots

however, have created via Monte Carlo simulations for these CFAR architectures. Both

square-law and envelope approximation (with a = 1 and b= 1) detector results are com-

puted for comparison.

1. Cell Averaging CFAR

a. Background

The CA CFAR method as first introduced by Finn and Johnson [Ref. 201

in 1968 is the most basic adaptive threshold CFAR algorithm. This system can be

viewed as the first step in a long evolutionary chain of CFAR systems. The CA CFAR

method uses the maximum likelihood estimate of the noise power to set the adaptive

threshold under the assumption that the output of the reference cells are statistically

independent and identically distributed (1iD) random variables. When the operating

conditions of the radar meet this criteria, the CA CFAR detector is optimal in the sense

that the Pd approaches that of the ideal Neyman-Pearson detector as the number of

reference cells becomes large [Ref. 211.
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b. System Description

The schematic diagram shown in Figure 9 outlines the CA system, which is

similar to the generic CFAR depiction previously shown in Figure 2. This description

shows the CA summations of the left (leading) and right (lagging) reference cells. This

summing and normalizing action is what makes this detector a member of the mean level

family of estimators. The summation and averaging is this systems unique way to

measure the mean noise level. In operation, the returns from a given pulse are detected

and a sample is taken from each range resolution cell. The cell under test is the central

cell. Ir he CA CFAR, the inputs of the M number of cells are summed resulting in an

estimate of the background noise. The adaptive threshold level is obtained by multi-

plying the summed value by a scaling factor (threshold multiplier) depicted as a. This

value is then normalized by M yielding the overall adaptive threshold level. The mag-

nitude of the test cell will then be compared to this adaptive threshold in order to de-

termine the presence a target.

c. Statistics and Performance

As CFAR systems evolve technically, their characteristic statistical repres-

entations often increase in complexity and length. The statistical representation of the

CA CFAR is one of the more simpler descriptions and therefore most easily understood.

With this in mind a comprehensive examination of CA CFAR statistics will aid in the

understanding of how other systems are statistically represented. The following

equations are taken from Levanon's CA CFAR discussion [Ref. 21.

Beginning with the assumption that the M samples from the reference cells

are independent and Gaussian, the envelope r of Gaussian noise will have the PDF given

as

2
p(r 1 A -- 0) er _9p~rI=O)• 7e 2fia,

where P is the noise RMS value and A is the target amplitude. By normalizing the en-

velope with respect to P and accounting for the square law detector by making the

transformation

2

z= r 10

the k,, sample of the normalized detected noise thus has the PDF of
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Figure 9. CA CFAR Schematic

p(zk) = exp-2). 1

Using y For the output of the surmnation of leading and lagging cells

Y = Lzk, 12
k= I

the PDF of y is given as

AO= (- r- 1)! exp•- 13

The threshold is thcn set at

I ,-. --t 14

where T is the threshold multiplier that determines the probability of false alarm.

To find system Pt, (the probability that the magnitude of the test cell with

a target will surpass V,) the Rayleigh PDF of the target amplitude is given as
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A --A2

p(A) 2 exp 2AO' 15AO

where Ai is the most probable amplitude relative to the average signal power. The PDF

of the signal plus noise is given as

I( exp Ao 16

++(

where is the average SNR. Using (16) and the threshold fixed at V, the probability

of detection will be obtained as

Pd (SNR I Vt) = P(z) dz = exp I +SNR. 17

However, in the CFAR system the threshold is a function of the random variable y given

in (14). Thus (17) is only a conditional probability of detection and the overall Pd will

be obtained by averaging (17) over all y, that is

Pd(SNR) = 00JPd(SNR I V, = T-f )p(y) dy. 18

Using (13), (17), and (18) we get

Pd(SNR) = J exp( I M-O! exp(-Y) dy. 19
y=o

Finally, this known integral can be represented as

Pd(SNR, T, M)(1 + T +20
MI(l+ SNR)

The Po can be easily obtained from (20) by setting the average SNR to zero. That is

Pfa (T, M)( +  )-M 21
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The respective Monte Carlo CA CFAR P,., and P, plots are shown in Fig-

ures 10 and 11 for both the square law and envelope approximation detectors. As

shown, the P,. for the envelope approximation CA CFAR systems has a false alarm rate

10-2 at a threshold multiplier value of approximately 2.6, and a 10-4 rate at approxi-

mately 3.9 . The square law detector has much higher threshold multipliers. To main-

tain the false alarm rates of 10-1 and 10-4 the threshold multipliers of approximately 5.0

and 10.8 are required. Using these threshold multiplier values the P, curves for a IM =

32 cell system are generated. As expected, the superior false alarm rate threshold values

require significantly higher SNRs to maintain constant detection rates. In the envelope

approximation system for example, with a false alarm rate of 10-2 a P, of 0.6 requires

approximately 7 dB SNR whereas a 10-4 system requires almost 11 dB. The square law

system shows slightly better performance requiring approximately 0.5 to 1.0 dB less SNR

to achieve comparable detection rates.

d. Strengths and Limitations

When noise or clutter is stationary in tile reference cells, CA CFAR detec-

tors maintain effective CFAR action. Under these conditions CA CFAR is the preferred

detector in that it optimizes the tradeoffs between the P.. and the Pd. When these con-

ditions are not met the performance of the system decreases as the input interference

departs from the assumed Rayleigh distribution.

The two basic limitations of the system stem from interference found inside

the test cell or among the reference cells. As previously mentioned, when the test cell

is immersed in strong clutter regions, and the reference cells are in the clear, a natural

reduction in the threshold will occur resulting in an increase in the Pf,. This common

situation lead to the creation of the Greatest-Of (GO) CFAR algorithm, introduced in

1972 by Hansen [Ref. 22]. For the second case, when the test cell is in the clear and tile

reference cells have interferers, the threshold will be unnecessarily increased reducing the

system Pd. This led to the introduction of the Smallest-Of (SO) CFAR algorithm intro-

duced by Trunk [Ref 231.

2. Greatest-Of CFAR
a. Background

As stated, the GO CFAR was developed to overcome a decreased adaptive

threshold level in response to clutter regions. The GO CFAR attempts to correct this

weakness by independently measuring background noise levels from the leading and

lagging reference cells and then selecting the larger of these two values for use in the
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Figure 11. CA CFAR Probability of Detection
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Adaptive Threshold process. This process results in a selection of the reference window

that covers the clutter region thus resulting in a closer estimate of the true clutter envi-

ronment.

Of note, GO CFAR has also been termed Max Mean Level Detector

(MX-MLD) CFAR by Ritcey [Ref. 241. This naming denotes both the type of local es-

timator (MLD) as well as the combining operation (Max vs. GO). Both terms are ac-

cepted.

b. System Description

A conventional GO processor is depicted in Figure 12. As shown, the

square law or envelope approximation detector output is fed into the reference windows.

The leading and lagging window summations are denoted by Y1 and Y2 respectfully.

Both reference cell neighborhoods contain M/2 total cells. The detector threshold volt-

age level (V,) is obtained by selecting the greater of Y, or Y'2 (normalized by M,'2) and

then multiplied by the threshold multiplier T. A target is declared when the cell under

test exceeds V,. In GO CFAR, the background noise is assumed to be Gaussian, the

target in the test cell and any interfering targets are assumed to be fluctuating inde-

pendently, each according to Rayleigh PDFs [Ref. 17].

c. Statistics and Performance

The following Square Law statistical description of the GO CFAR has been

analyzed by Hansen [Ref. 25]. The detection performance of this process is derived as

follows :

For a SNR at the input to the Square Law detector, the normalized pdf of

the signal-plus-noise is
1____ -x

Px(X)=( (1+S\R) )exp( (l+ SR) 0 x>O. 22

The noise level estimates Y, and Y2 are IID with pdfs

M-) exp-y
py(y)=y2 M Y -O, 23

and the cumulative distribution function (cdf) of Z is then given by

F•z) = Fy(z)Fy(z), 24

where F,(z) is the cdf corresponding to p,(y). Thus
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y'igure 12. e o CFAR Schematic

Af exp--z x, ,v P Ix-Y
p,(z) = 2z-i- 2 2 0.2

r(- ratL)

"The probability of detection is then

rd =- f o~pIZz) X I p,(x)d.rdz. 26

By direct evaluation of the inner integral and terinwisc integration the following numer-

ical result is obtained.

2a 2xt + MAI( + SNR) ( A(I +SNR)
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2

x ~k 2 o + M( •SNR) 2

k-0

When the SNR is set to zero, this expression yields the system PF, as

P.2x 2 2+ 2T 22

the square-law and envelope approximation detectors. As with the CA CFAR, these

plots were generated via Monte Carlo simulation. As Figure 13 shows, the Pj,o values

of 10-2 and 10-' yield threshold multipliers of approximately 2.4 and 3.65 for the envel-

ope approximation detector and 4.5 and 9.8 for the square law system. These multipliers

in turn generate the Pd plots shown in Figure 14. As always, the superior false alarm

rate systems require higher SNR to achieve comparable detection rates. For example,

a 0.6 detection probability requires approximately 7.5 dB SNR at 10-2 ( P,° ), and ap-

proximately 11.0 dB at 10-' for the envelope approximation system. The square law

results again show an approximate 0.5 to 1.0 dB improvement over the envelope ap-

proximation detectors. In the following chapter these values will be compared with

other CFAR architectures.

d. Strengths and Limitations

A key advantage of using the MAX/GO family of detectors is that near the

edge of clutter regions the 'greatest of' reference cells capture the desired clutter samples

and maintains the false alarm rate. Also when a GO detector operates in a benign en-

vironment suitable for (CA CFAR), only a small CFAR loss of 0.1 to 0.3 dB is noted.

This loss is due to the reduction of the total number of reference cells (by half) available

for noise estimation.

Unfortunately, GO CFAR maintains the false alarm rate in clutter regions

at the expense of the multiple target scenario. In the analysis by Weiss [Ref. 15 J a GO
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system in the presence of an interfering target shows that target detection is nearly in-

hibited. This problem can be grasped intuitively since when the interfering target is

large, the half portion of the reference cells containing this extraneous target is almost

always selected in the GO process, hence the threshold is further increased making for

greater detectability loss.

3. Smallest Of CFAR

a. Background

The Smallest Of (SO) CFAR system introduced by Trunk [Ref. 23] is de-

signed to handle closely separated target situations. Generally, if the targets are close

together, the detection from both targets are merged and a single target is reported. The

problem of resolving merged targets is not only a function of the target separation but

also a function of the signal strength. Usually it is assumed that if targets are large

enough to be detected, then they can be resolved if they are separated by at least one

pulse width (PW) or equivalently, lie within different range cells [Ref. 23].

b. System Description

The operation of the SO system is exactly the same as the GO except that

the smaller of the normalized leading and lagging reference window summations are used

as the noise power estimate. Figure 15 shows the SO processor architecture with the

sole change being the selection logic.

c. Statistics and Performance

In the SO CFAR scheme, the noise estimate uses the smaller of the sums

Yi, and Y. That is

Z = min( Y, Y2 ) 29

Where Y, and Y2 are defined as

n N

Y1 =ZEx Y2 LZX1. 30
1=1 li=n +l

Gandhi [Ref. 26] completes this analysis stating that the pdr of Z is given by

fz(z) =A(z) +A(z) - F2(z) +f2 (z)F(z)]. 31

Wheref, and F, are the pdf and cdf of the random variable Y,. This yields the false alarm
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Figure 15. SO CFAR Schematic

probability

P/,, T y= Tr( - + 'Y 2( -T ) 2(1 + 7) -"

n--I

-2 x Z .+ (2 + 7)-On+o 32
i=

Wherc 4l'r,(7) and 'T,( 7) are the moment generating functions (mgf) of the random

variables 1, and Y., T is the threshold multiplier, and p is the background total noise

power. The detection probability is then obtained by replacing T with T(I + SNR)

yielding
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Pd - T "T 2 + S -
(1 + SNR)2p (I + SNR)2 )- 2( + SNR

2 x n+i- (2+ TR)<n+O 33D 1 + SNR

1=0

The SO system performance plots created via Monte Carlo simulation are

shown in Figures 16 and 17. Figure 16 shows the probability of false alarm using the

square law detector. As shown, the envelope approximation false alarm rate of 10-2 re-

sults in a threshold multiplier of approximately 2.75, whereas a 10-4 false alarm rate re-

sults in a multiplier of approximately 4.4. The square law system results in multiplier

values of approximately 2.85 and 13.8 for the 10-2 and 10-4 false alarm rates. Figure 16

displays the P, curves at the false alarm rates of 10-2 , and 10-4. As always, a higher SNR

is required to maintain the superior false alarm rates. In Figure 17 it is shown that a

0.6 detection probability (envelope approximation) requires approximately 6 dB SNR

at a 10-2 P, , approximately 11.5 dB at 10-. The square law results again show a 0.5 to

1.0 dB improvement over the envelope approximation system. These values will be

compared against the other MLD systems in the following chapter.

d. Strengths and Limitations

The strength of the SO technique is its excellent performance in resolving

closely spaced targets. The detector performance degrades significantly however if in-

terfering targets are located in both the leading and lagging windows simultaneously.

This clearly results in at least one of the interferers influencing the voltage threshold

value and therefore possibly masking the primary target. Furthermore, the SO processor

fails to maintain a CFAR at clutter edges. Gandhi [Ref 261, has shown that a 15 dB

clutter edge leads to an increase greater than five orders of magnitude in the false alarm

rate at N = 24 and design P,. of 10-1. Finally, even in a relatively benign environment the

SO architecture results in an excessive number of false alarms since the SO selection

yields a very low Adaptive Threshold level. This level is generally lower than many

clutter spikes, all of which yield false alarms.

More so than the other Mean Level Detectors, the SO processor is highly

dependent on the number of reference cells chosen. For a small N, the CFAR loss is

quite large but decreases considerably for increased N. For example Weiss [Ref. 151 has
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shown that the detectability loss of the SO CFAR scheme is approximately II dB for the

N - 4 case but only 0.7 dB at N - 32 (P.,).

C. RANK ORDERED CFAR PROCESSORS

1. Ordered Statistics CFAR

a. Background

The Ordered Statistic (OS) CFAR processor was designed to overcome the

loss in detection performance suffered by CA CFAR when interfering targets were lo-

cated among the background cells. Introduced by Rohling in 1983 [Ref. 271, OS CFAR

provides inherent protection against drastic reductions in performance in the presence

of interfering targets. The OS technique rank orders the background voltages encount-

ered in the neighborhood areas according to their magnitude and then selects a certain

predetermined address from this sequence. This address value can be the median, the

minimum, the maximum or any other value. OS techniques have been proven to work

satisfactorily in both multiple target and non-uniform clutter areas, although they pres-

ent a small increment in detection loss. OS CFAR methods overcome many difficulties

which arise in various situations of multiple targets in clutter, but many detection

problems in special clutter regions remain to be solved.

b. System Description

The schematic of the OS-CFAR system is shown in Figure 18. In this sys-

tem the values of the reference cells are first sorted by magnitude. The ordered sequence

thus achieved is represented by the indices in the parenthesis.

X !- X(2)5 ... _ 34

46



Figure 18. OS CFAR Schematic

The main premise of OS CFAR is to use some rank selection from the ordered sequence

Ibr us• as the estimate for the average noise power in the entire reference window. TIhe

variable K identifies the rank or the address of thie cell whose input is selected for rurther

processing. Tlhe thrcshold level IV is then obtained by multiplying the input from the

Kilh rankcd ccli by the scaling factor " so that

V 7k 35

is a random variable and its PDF is a function of the PDF of Z,. The use of statistics
in OS ('[AltR processing does not define a single CFAR method but rather a series of

several ('FAR methods. For any given choice or Z,, a distinct CFAR processor is es-

tablished. Rohling pointed out that the choice of the representative cell K will effect the

perlbrmancc of the OS CFAR without interfering targets. For example, in a 16 cell

refýrcnce window with a single target, the detection rates for a K = 10 system are

markedly diflfcrent then for a K - 14. Generally, with no interferers, performance in-

creases as K is increased. However, with two interferers, K = 14 has an additional I

dB loss as compared to the K = 10 case. The poor performance in the presence of

interferers stems from the fact that we reach the point where M minus the number of

intcrfcrers (1) equals K, implying that the representative cell becomes the highest ordered

target free reference cell.
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c. Statistics and Performance

The statistical representation of rank ordered CFAR becomes more com-

plex and difficult to grasp as the CFAR architectures expand. The OS CFAR analysis

is the basis for all other rank ordered systems and is shown. Using the previous nota-

tion, the PDF of the threshold random variable will be shown, as well as equations for

P, and P,. The optimum choice of K is the number of reference cells (M) min.us the

anticipated number of interferers (J). The following analysis of OS CFAR was taken

from Levanons work [Ref. 21

K= M- J (K!<,M) 36

VI = TZK. 37

When Z is a random variable with a pdf p(z) and a distribution function P(z), the Kth

ranked sample has a PDF

(Z) = 38

where

p(z) = exp(-), 39

and the distribution function is therefore

P(z) = exp(-2) dz = I - exp(2). 40

Using 38, 39, and 40 the PDF of the Kth sample is found to be

p =K(Z) exp( -z)M-K+IlI- exp(-'2)](K-). 41

The probability of a noise input in the cell under test crossing the voltage threshold is
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P(Z V> V, ) V) " f exp'-1) dz = exp(-v,). 42

The threshold V, is a function of the random variable z, Thus the P,. can be derived by

averaging 42 with V, expressed as a function of z,

Pf. = fo exp(-Tzt) p(zK) dZK 43

or

{fa = exp(-TzPk(z) dz. 44
*0

Using Equations 41 in 44 the Pr, becomes

=( M (T+ A- )!(K- 1)! 45fa.= KTI (T+M) f!

In order to derive the P, we can use the same expression used for the P.. by replacing the

T with 1' where

T 46
1 + SNR

thus

Pd f exp(-r)PK(z) dz. 47

or

Pd -K( M (T + A- K)!(K- 1)! 48
= K( + ,)!
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The P,, for the envelope approximation OS CFAR is shown in Figure 19.

As shown, a false alarm rate of 10-2 is found at a threshold multiplier value of approxi-

mately 2.3 and a 10- false alarm rate has a multiplier value of approximately 3.6. The

square law results yield threshold multipliers of approximately 5.0 and 11.3 to ensure the

10-2 and 10- false alarm rates. Figure 20 displays the resulting P, curves for the envel-

ope approximation and square law systems at the false alarm rates of 10-2, and 10.

This figure shows that a 0.6 detection probability requires approximately 8 dB SNR at

the 10-2 rate, and approximately 12 dB is required for the 10-' case. These values will

be used in the following chapter to compare the different detector types. These Monte

Carlo solutions are the result of the simulation where the value of K was set as the 20th

position of the ordered sequence.

d. Strengths and Limitations

In general, the presence of one or more interfering targets among the refer-

ence cells causes the adaptive thresholds to increase erroneously. In OS CFAR this in-

crease is relatively small. A reference cell with an input from a strong target will be

ranked at the top, namely, it will occupy the Mth out of M cells. Thus the interfering

target effectively reduces the number of reference cells to M-1. In the presence of I

strong interfering targets, the effective number of reference cells drops to M-J. As stated

by Levanon [Ref. 28], the detection loss due to the increase in threshold is not extensive

as long as 3 NM - K.

Unfortunately the OS CFAR system suffers from two main limitations.

First, small targets are easily missed in the presence of multiple targets. Clearly, the

chosen K will detect the large targets but will set the V, at a value too high for small or

distant targets to cross. A second limitation of OS CFAR is its inability to perform at

clutter edges. Any sharp clutter edge gives a clear rise in the system false alarm rate with

respect to the false alarm rate that would be obtained in uniform clutter.

2. OSGO and OSSO CFAR

a. Background

In this section two modified OS CFAR architectures are analyzed. The

OSGO (Ordered Statistic - Greatest Of) and the OSSO (Ordered Statistic - Smallest Of).

OSGO CFAR has all th, 'antages of standard OS CFAR in the nonhomogeneous -*a.

multiple target situations with a negligible additional CFAR loss in the homogeneous

environment. The OSSO CFAR's sole advantage is that it has the equivalent processing

speed as an OSGO. Unfortunately, the OSSO can not control the false alarm rate and

it also behaves poorly in the nonhomogeneous clutter situations [Ref. 29].
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b. System Description

The schematic for the OSGO and OSSO system is

shown in Figure 21. The OSGO and OSSO algorithm is based upon two assumptions.

First that the noise estimation reference cells have an exponential PDF; and second that,

noise in the cells are independent and homogeneously spread. The OSGO CFAR algo-

rithm consists of taking the greater value of the two samples (leading reference cell is

K,, lagging reference cell is K,). Obtained from Order Statistic techniques applied to the

two neighborhood regions independently. The random variable Z is therefore found as

Z = max(Kt. K2). 49

For an OSSO system the algorithm takes the smaller value of the two representative cells

so that

Z = min(K1 , K2). 50

From this point the OSGO/SO systems perform their operations identical to that of the

standard OS system.

c. Statistics and Performance

Using Rohlings [Ref. 27] expression for the pdf for a kth representative cell

of a set of M'2 cells, Elias-Fuste [Ref 291 analyzed the OSGO and OSSO functions

yielding

M --k -M --k

"2 -
k (-i kOSGO =2k2( k)2 2k i )~.k

• fa J10 1=0 51
(-)M-2k-j-1 F(,v -j- )r(T+ 1)

A . F(M-j- i + T+ 1)

2
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Figures 22 thru 25 display the performance characteristics of the OSGO and

OSSO envelope approximation and square law systems. Figures 22 and 23 show the

false alarm rate versus threshold multipliers. As shown the OSGO envelope approxi-

mation system obtains a 10-2 value at an approximate 2.2 threshold value and a 10-4

value of approximately 3.3. The OSGO Square Law system shows the 10-2 and 10-4

rates at multipliers of approximately 4.1 and 9.35. The OSSO Envelope Approximation

systems reach a 10-2 and 10-4 rates at the higher values of 2.5 and 4.05. The OSSO
Square Law system shows the 10-2 and 10-4 rates at multipliers of approximately 6.1 and

14.8. As shown in the previous CFAR systems, the Square Law system yields a superior

detection rate as compared to its Envelope Approximation counterpart. Figures 24 and

25 show the OSGO and OSSO detection rates. In these Monte Carlo simulations, the

GO or SO of the 10th cell (out of 16) was chosen between the leading and lagging or-

dered sets to be used as the representative noise estimate.

d. Strengths and Limitations

Both OSGO and OSSO systems have a key advantage in that they both re-

duce processing time in half. This is due to two specialized sorting processors working
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PROBABILITY OF DETECTION CURVES FOR OS-GO OFAR
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i.ndepcndently on the leading and lagging reference cells. Figures 26 and 27 show the
c;.pahilitics of these two systems in a test environment that includes interfering targets
arid cliatcr cdging. Taken from Elias-Fuste [Ref. 29J, this test contains 256 reference
tsxll. 2 clutter edges of 30 dB extending from the 30th to 190th cells, and three targets
with SNI. values of 19, 54, and 19 dB. The interferers are located in cells 100, 105 and
110. An additional target of 22 dB is located at position 215 outside the clutter cloud.
As Figure 26 (OSG(O system) clearly shows the adaptive threshold level (dashed line)
alhvaxs maintains a value greater than the noise plus clutter level (even at the edges).
Also. all four targets are detected as they cross the threshold boundary. In Figure 27
(OSSO system) it is shown that all four targets are also detected but with an unaccept-
able false alarm rate due to an inability to handle clutter edge effects.

The OSGO CFAR appears to be a fine substitution for the standard OS
CFAR since it maintains the key OS system strengths and reduces processing time. The
OSSO system on the other hand, with its inability to control the false alarm rate, makes
it a poor CFAR system for many applications.

too T
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rigure 26. OSGO CFAR Performance in a Test Environment
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3. Censored Mean Level Detector (CMLD) CFAR

a. Background

The CMLD system was proposed by Rickard and Dillard in 1977 [Ref. 61
and is a generali7ation of the traditional CA CFAR detector with modifications that
provide robust performance in the multiple target environment. This is accomplished
by censoring a select number of input samples from the ordered group. Like the MLD
fhmily, CMLD obtains its noise information estimate from neighboring resolution cells.
This combination of OS and CA concepts uses an average of all but the first (or first and
second) largest noise reference samples (i.e. the largest inputs are censored from the av-
craging routine). The result of this combination system is an architecture that has robust
properties that offers superior performance in multiple target environments.

b. System Description
The schematic of the CM LD system is displayed in Figure 28. As always,

the reference window may contain noise and or return echoes from an interfering target.
The primary target return echo is observed in the cell under test. The output of the
reference cells jq,j, i = 1,2,...,M are fed into a ranking device which outputs the samples

in ascending order according to their magnitude to yield the M ordered samples
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q(,) < q(2):5 ... *- q(,f. 55

At tlis point the largest K (I or 2) samplcs are censored. The remaining NI samples are
combined to Ibrm an estimate of the noise level in a procedure identical to that of CA
("FAR. The estimation is then multiplied by a constant T (threshold multiplier) to yicld
the adaptive threshold against which the cell under test will be compared.

I f

-r~ikl allori9hm ]
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q(~~ qll " l%

T

Figure 28. CMILD CFAR Schematic

c. Statistics and Peiformance

The analysis for the CMLD detection and false alarm probabilities was or-
iginally completed by Barkat [Ret 301. The following lists the CMLD systems false

alarm and detection probability equations.

SNR

Pd = '*'[TO(SNR)J - T . 2 (TO(SNR))]. 56
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where 1 is the inverse of the noise power. The detection probability uses the moment

generating function (T') where

-2(SNR)(x + 5)
p[O(SNR) + X12

and

O(SNR) SNR 58

The probability of false alarm can be determined by setting the SNR to zero yielding

Pf, a T(TrL). 59

Figures 29 and 30 display the Pf, and P, plots for the CMLD system. The
envelope approximation system has a 10-2 false alarm rate at the threshold multiplier of

approximately 2.7, and a 10-4 value at approximately 4. 1. The square-law system shows

corresponding values of approximately 5.7 and 11.8. In Figure 30, the Monte Carlo

driven detection curves show SNR versus detection rates at 10-2 and 10. P, . To

achieve a detection probability of 0.6, a SNR of approximately 7.5 dB is required at the

10-2 rate, approximately 11 dB at 10-4 for the envelope approximation system. The

square law system shows slightly improved performance over the envelope approxi-

mation system. In the Monte Carlo simulation that generated these curves, two of the

larger ordered values were censored. This in turn led to 30 reference cells being used in

the noise estimation process.

d. Strengths and Limitations

The performance of the CM LD system exhibits only small additional losses
in the homogeneous environment (as compared to CA CFAR) but was shown to be

quite robust when a single large interferer is presented into the reference window. The

major limitation to CM LD is that the number of cells used for noise estimation should

be equal to the total number available (M) minus the actual number of outlying

interferers (J) in the reference window to ensure superior detector performance. It has

been shown by Barkat [Ref. 301 that the CMLD performance is seriously degraded if the

exact number of interferers is not censored. This requires a priori knowledge. As ex-

pected , the more interfering targets censored results in poorer performance. It is clear
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PROBABILITY OF DETECTION CURVES FOR CMLD OFAR
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the if the number if interferers is unknown, the CMLD will not only lose its robustness

but also its CFAR properties as well. For example, if the ordered list is undercensored,

then the noise estimate will be contaminated and result in a degraded detector. On the

other hand, if overcensoring occurs, the noise estimate is underestimated and an exces-

sive number of false alarms occur.

4. Trimmed Mean CFAR

a. Background

The Trimmed Mean (TM) CFAR scheme is a generalization of the OS

scheme in which the noise power is estimated by a linear combination of ordered sam-

ples. In the TM CFAR processor, a symmetric or asymmetric number of cells are

trimmed or censored from both the upper and lower ends of the ordered list. The

threshold is then estimated by forming the sum of the remaining cells. In TM CFAR,

as in CMLD CFAR, the censoring points are preset. Again, this implies that some a

priori knowledge about the background environment is required to sensor efficiently the

unwanted samples [Ref. 31].

b. System Description

The schematic of TM CFAR is shown in Figure 31. The TM system first

sorts the outputs of all the reference cells by magnitude. Then, it judiciously censors the

K, lower and K2 higher ordered samples in the reference window irrespective of the actual

background environment. When K, = K2 , the system symmetric and when these values

differ the system follows asymmetric trimming. The noise level estimate for the cell un-

der test is then set to be the normalized sum of the uncensored samples, that is

N-K 2

v, = 60
1(N-K1 -K 2 )

J= K1 +1

Gandhi has shown through testing that the choice of K, plays the critical role in a TM

system performance. Table 5 [Ref. 261 displays the effect that different values of K, and

K2 have on the adaptive threshold multiplier level (M = 24 and P.. = 10-) for both

symmetric and asymmetric systems. As shown, when the K2 censoring value is too high,

system performance suffers. This is clearly shown by the high valued threshold multi-

pliers required to maintain the false alarm rate. As shown, th TM system performance

is most interesting when asymmetric trimming is employed. As shown, with a fixed K,
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Table 5. SYMMETRIC AND ASYMMETRIC TRIMMING EFFECTS

K I K2 Thresh Mult KI K2 "lhresh Mult

1) 0 0.778 2 4 1.548
1 1 0.941 2 7 2.566
2 2 1.121 2 10 4.590
3 3 1.329 2 15 17.60
4 4 1.585 2 17 40.50
5 5 1.907 4 2 I.14(0
6 6 2.338 7 2 1.200
7 7 2.941 10 2 1.313
8 8 3.841 14 2 1.643
9 9 5.340 17 2 2.280)

K2 is increased. On the other hand, only minimum degradation occurs when K, is fixed

and K, is increased. IRef. 261
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c. Statistics and Performance

The following analysis of TM CFAR was taken from Gandhi's work [Ref.

261. Beginning with the estimate Z given by

N- K, - K2

Z= 61
j-1

The mgf (moment generating function) of Z is therefore the product of the individual

mgf of the x, 's. Therefore the false alarm rate is found to be

N- K, - Kj

Pf j T(r 62

where

) al 63
a1 + T'

where a, = (N - K, - i + 1) / (N - K, - K2 - i + 1). The detection probability P, is ob-

tained by replacing the threshold multiplier T with Ti(I + SNR).

Figures 32 and 33 display the performance plots of the TM CFAR system.

The probability of false alarm and detection data were Monte Carlo simulated. As

shown in Figure 32, a threshold multiplier of approximately 2.6 is required to maintain

a 10-2 false alarm rate and a value of 4.0 is necessary to maintain a 10-4 rate for an en-

velope approximation system. The square law results that a threshold multiplier value

of 5.6 and 12.3 are required to maintain the false alarm rates of 10-2 and 10-4 The de-

tection plots shown in Figure 33 show SNR versus detection probability at 10-2, and

10-1 P,. As shown, a 0.6 probability of detection can be found at a SNR value of ap-

proximately 7.5, and 11.5 for the two respective false alarm rates. In the square law

system a 0.6 detection rate can be found at corresponding SNR values of approximately

7.0 and 11.0 dB. These values are very similar to the CM LD system. They were gen-

erated by symmetrically trimming the two largest and two smallest ordered reference

cells. This resulted in 28 remaining cells to be used for system noise estimation.
d. Strengths and Limitations

A main limitation of the TM system is that as trimming increases, both the

scaling factor T and the CFAR loss increase. To compound this problem, a priori in-
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formation is critical in order to properly choose trim rates. Consider the situation where

the leading half of the reference window contains cells from clutter plus noise and the

lagging half from a clear background. The noise power estimate will include both clear

region and clutter plus noise background regions. The corresponding threshold will then

not be high enough to regulate the false alarm rate if the test cell contains a return from

the clutter plus noise area. Also in a non-uniform background, a compromise must be

made in determining the proper trimming parameters. In order for the process to be less

sensitive to interfering targets, K2 should be set to a value greater than zero, and the

value of K 1 should be small in order to attain good detection performance in the ho-

mogeneous background. If the concern however is to handle clutter edges, K 1 should

be large and K2 should be small. Unfortunately in most cases we are interested in reg-

ulating the false alarm rate in both clutter edge and multiple target environments. This

balancing act is near impossible to maintain in any dynamic radar operating environ-

ments making TM performance quite variable.

D. NON-ADAPTIVE THRESHOLD CFAR TECHNIQUES

1. Introduction

Although the focus of this thesis is on the optimization of adaptive threshold

CFAR architectures, other important systems that perform CFAR functions also exist.

Discussed here are two such systems. The first technique to be discussed is Clutter

Mapping (which uses temporal rather than spatial information to control the false alarm

rate). The second technique is a Non-Parametric CFAR that is generally insensitive to

environmental background changes. Although these systems will not be covered in great

depth, they are introduced to the reader for completeness.

2. Clutter Mapping

a. Background

The Clutter Mapping (CM) system is a specialized CFAR device which av-

erages radar returns temporally over several scans to form an estimate of the mean

background noise levels. This system is quite different from the adaptive schemes that

use spatially differing inputs. The CM CFAR device compares present returns in each

cell to a background estimate for that specific cell based on past inputs from that cell

only. Past inputs refer to previous radar scans. For effective operation, the CM CFAR

device requires temporal rather than spatial stationarity and is thus ideally suited for

CFAR problems over land [Ref. 321.
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lDue to the typically large amount of cells to be processed, the required
proce'osing speed and high cost of digital memory, early clutter maps were typically of
the blanking type. This system operated with a simple counter that measured how often
clitter appcaicd in a specified cell. When this counter reached a preset level, all returns
in that cell rc2ion were blanked. Today, reduced costs of digital memory and technical
advancements in signal processing equipment has resulted in a recharged interest in high
resolulion CM CF'AR processing.

b. Ijystepn Description

The CM technique sets independent threshold levels in each map cell to
yield a CI-AR. As shown in Figure 34, Ilef. 32] this technique operates by dividing the
radar space into cell units.

Resolton Cob

Spred MaP Cell - 27 oet oonsiderd

dutv mWp upate

Figure 34. Clutter Map Range and Azimuth Cells

Each cell represents in range and azimuth one resolution cell. As shown, the five high
lighted cells represent one clutter map cell. The spread map cells denote the area con-
sidered during the map update process. Although only five cells compromise a CM cell,
due to map spreading a total of 27 cells are considered during map update.

The CM process consists of a number of steps. First, for each CM cell the
map spreading logic selects for map update the greatest amplitude of all resolution cells

within the map cell as well as the additional spreading set that borders the map cells.
This amplitude is then stored in the proper location of the measurement map. The
process continues with averaging the content of the measurement map with the current
stored value in the Clutter Map. The average amplitude in each cell is estimated by a
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low pass, digital filtering of the input data. Target detection declarations then follow the

CA CFAR logic form. If the CM cell value exceeds that mean background estimate, a

target is declared.

c. Design Issues

The design of a high resolution CM system is not necessarily feasible for

any combination of radar parameters. Four key parameters are used in the determi-

nation of a CM design and include; compressed resolution cell size, radar update period,

number of pulses noncoherently integrated, and detector law employed. According to

Farina [Ref. 41, CM CFAR designs are based on:

" The geometry of the map: How the surveillance space is divided into cells (i.e. rec-
tangular or polar).

" The map building process: The map changing process may be periodic with in-
creasing and decreasing counters or by amplitude averaging. Also, assuming a map
cell larger than the radar cell, the data obtained in one radar cell may be used alone
or in combination with data from nearby cells.

" The approach taken: Different action can be decided on the basis of the content
of the CM. Such actions include blanking zones, switching to different processing
channels, resetting detection thresholds in each cell, and tracking clutter points.

d. Strengths and Limitations

A primary reason for employing a CM CFAR system is for its excellent

interclutter visibility. Interclutter visibility is the ability to detect and track targets in

shadow areas where clutter is normally absent. Another favored capability of a CM

system is that it generally provides better detectability of targets in near tangential flight
paths over clutter regions [Ref. 7]. Finally, CM systems also may be employed to sense

locations where clutter echoes are too strong to be suppressed by other signal processing

systems such as doppler filters.

The major limitation, or drawback of CM CFAR is the assumption that

clutter statistics are temporally stationary (over five to ten scans of the radar).

Rainstorms, jamiing, and other nearby radars thereby cause excess false alarm rates.

Also large differences in system capability become apparent even with low velocity point

clutter. At only two knots velocity, there is a four orders of magnitude difference be-

tween the false alarm rate as compared to zero knots. Even with a land based radar

where there should be no apparent velocity between the land clutter and a radar, changes

in the atmospheric index, multipath and systems instabilities all lead to small positional

shifts resulting in unacceptable false alarms.
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3. Non-Parametric CFAR

a. Background

Throughout the discussion of the adaptive threshold CFAR techniques, an

emphasis was placed on optimal detectors requiring an essentially complete statistical

description of the input signals and noise. Thomas [Ref. 33] mentions three compelling

reasons which lead to consideration of other 'nonoptimal' detectors. First, a complete

statistical description of the input is rarely available; second, the statistics of the input

data set may vary with time or may change from one radar application to another.

Finally, optimal detectors may be too complex or costly to implement. Adaptive sys-

tems have developed and evolved to meet the first two conditions and can perform in a

near optimal sense in a unknown or changing environment by proper adaptation of de-

tector structure: however, such detectors tend toward greater complexity. Non-

parametric or distribution-free detectors exhibit insensitivity to the environment rather

than adapting to it and often exhibit simplicity in implementation.

In the Non-Parametric (NP) device it is assumed that the statistics of the

interference are unknowvn. The rational of the approach is to somehow map the un-

known PDF onto a known one where a fixed threshold produces CFAR [Ref. 4]. This

technique enables CFAR performance against very broad classes of noise probability

density functions [Ref. 22].

b. System Description

A wide assortment of NP processing techniques are available and present a

the practical problem of choosing the proper technique for a particular need. A com-

mon and simple NP detector obtains a CFAR by order ranking the test cell among the

reference cells [Ref. 34]. The smallest ranked value receives a rank of zero and the largest
a rank of N. Under the hypothesis that the samples are independent with unknown

PDF, the test cell has equal probability of taking on any of the N ranked values from

zero to N. The rank detector is then constructed to compare the rank of the test cell

against a preset threshold rank. If the cell under test rank is greater than that of the

threshold rank, a target is declared. This simplistic system normally incurs a CFAR loss

of approximately 2 dB but achieves a fixed false alarm rate for any noise density as long

as the input sample stream remain independent.
c. Strengths and Limitations

The insensitivity to environmental noise density changes is the strong suit

of any NP detector. Clear costs are paid for this action however. Besides the 2 dB loss,

correlated samples result in a detector inability to maintain CFAR. Also, a large inter-
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fering target may lead to target suppression, that is, if a large return is found in the ref-

erence cells, the test cell will not receive the highest ranking possibly resulting in a rank

below the threshold rank. A final concern is that by maintaining only the rank orders,

the system loses the actual signal amplitude information which may be used in other

signal processing applications.
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V. CFAR ARCHITECTURE COMPARISONS

A. INTRODUCTION

A great deal of literature has been written comparing the relative performance of

various adaptive threshold CFAR systems, each paper dealing with only one to three

different types. The goal of this chapter is to compare on a larger scale, all eight of the

popular types of CFAR systems being used today. As always, there are tradeoffs in

capabilities between systems; that is, even if one detector is superior in o.1e scenario, it

may be poorer in some other. The system comparisons will be on the basis of capability

in 1) homogeneous noise, 2) clutter edging, and 3) interfering targets. It should be un-

derstood that these are but three idealized examples of the multitude of different situ-

ations which may occur in actual radar operation.

The comparisons made in this chapter will be restricted to the adaptive threshold

systems previously discussed. The chapter begins with a comparison of the M LD family

of detectors followed by a comparison of the rank ordered systems.

B. MEAN LEVEL DETECTOR COMPARISONS

The relative capabilities of the M LDs are tested under the three test environments

of homogeneous noise, clutter edges, and multiple targets. As discussed, the CA CFAR

is the optimum system in the homogenous noise environment. The modifications to CA

CFAR (GO and SO) have been proposed to overcome the problems associated with the

non-homogenous background. The GO system was designed to regulate the false alarm

rate in the region of clutter transitions and the SO system was designed to resolve two

closely spaced targets.

1. Homogeneous Noise

In the homogeneous environment, the threshold multiplier T can be used to

judge a systems capability. Table 6 [Ref. 261 details the CA, GO, and SO (Square Law

systems) threshold multipliers at various false alarm rates and different selections of N.

The data in this table represents the noise only environment. As shown, the CA system

has the lowest threshold multiplier in all cases which results in superior P, values. The

GO systems values are slightly worse and the SO system values are significantly poorer

than that of the CA detector.

Figure 35 details detection probability curves for the MLD family via Monte

Carlo simulation using an envelope approximation detector. The P, for these curves
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Table 6. MLD THRESHOLD MULTIPLIERS (SQUARE LAWk)
N=8 N=8 N=8 N=16 N=16 N=16

Pfa (CA) (GO) (SO) (CA) (GO) (SO)

10-4 2.162 3.600 10.88 0.078 1.360 2.444
10-6 4.623 7.780 36.00 1.371 2.420 5.131
10-8 9.000 15.30 1 17.90 2.162 3.860 9.905

was set at 10-' with a total of 32 cells being used. As expected, the CA CFAR is the best

system in this environment with the GO system showing approximately 0.2 dB additional

loss and the SO system yielding a 0.7 dB additional loss.

2. Clutter Edges

The second comparison area considers detector performance in clutter regions.

These regions can be caused by chaff, weather clutter distributed in range, and by patchy

land clutter. The boundary of this interference (the clutter edge) will move into and out

of the reference cells as the test cell approaches or leaves the clutter patch. Of prime

concern is the detectors ability to regulate the false alarm rate caused by edging and not

specifically with detector losses [Ref. 351. In the troublesome scenario where the clutter

edge occupies half of the reference cells, Moore [Ref. 351 states that the Pf, of the CA

system increases by a factor of a 1000, whereas the P,. of the GO system only increases

by a factor of 17.5. This control of the false alarm rate is the prime advantage that the

GO system maintains over CA CFAR. As expected, the SO CFAR system has the

poorest performance in clutter edge regions. Trunk states [Ref. 23] that the SO

processor performance worsens by more that 5 orders of magnitude when the clutter to

noise ratio is greater that 15 dB. Figures 36-38 show the capabilities of the three MLD

systems confronting a 'real' sea environment clutter edge. The adaptive threshold levels

for each system are shown versus the actual clutter power levels. Figures 36 and 37

clearly show that the CA and GO algorithms handle the simulated clutter edge. How-

ever, the SO system shown in Figure 38 is unable to handle the leading and lagging edges

of the clutter region leading to unwanted false alarms.

3. Multiple Targets

The final scenario to examine is how multiple target situations affect the M LD

family. The SO CFAR system which was designed specifically for the multiple target

scenario is nearly unaffected by a single interfering target while the suppression is serious
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Figure 36. CA CFAR In Clutter Edges
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GO CFAR IN CLUTTER EDGING
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in the CA CFAR and even worse in the GO. Practically, when the total number of ref-

erence cells is less than or equal to 16, detection of target pairs with a GO CFAR system

is almost totally inhibited [Ref. 15].

Figures 39 and 40 show the effects of interferers on the envelope approximation

MLD systems. In Figure 39 a single interferer is introduced into the reference cells.

As anticipated the SO system has the best performance with a single interferer yielding

the smallest additional CFAR loss of approximately 1 dB. The CA and GO system

performances are significantly reduced yielding an additional loss of approximately 3 and

5 dB respectively. Figure 40 shows the effects of 2 interferers (both in the same reference

cell neighborhood) on the MLD systems. Again, the SO system maintains its perform-

ance while the CA and GO systems perform poorly.

4. Conclusions

The tradeoffs to be compromised concerning the selection of the appropriate

type of processor and adequate choice of N are highly dependent on the clutter and in-

terference models the radar engineer chooses. An optimal and general performance

CFAR detector can almost never be devised. Therefore it is of great importance to un-

derstand fully the operating environment of the radar system in order to correctly tailor

or choose the proper CFAR system that will yield superior results for some particular

application.

C. ORDERED STATISTICS VS. MLD COMPARISONS

As previously discussed, the OS processing scheme was introduced to alleviate the

problems associated with the MLD family. Of significance is that a properly designed

OS detector with interfering targets maintains its robustness with only gradual detection

loss, while suffering only a minor degradation in the homogeneous environment. Like

the MLD systems though, the OS processor is generally unable to prevent excessive false

alarm rates at clutter edges unless the clutter appears in one single contiguous patch.

1. Homogeneous Noise

In the homogeneous environment the OS CFAR processor performance is in-

ferior to that of both the CA and GO systems. The loss however is typically 0.5 dB

(K = 21, N 24, Pj = 0.5) [Ref 261 and is quite tolerable. Figure 41 displays the Monte

Carlo comparison of the CA, GO, SO and OS systems in homogeneous noise. The false

alarm rate used was 10-4, and the number of reference cells set at M = 32 with K set to

20 in the OS system. As shown, the OS system is only slightly poorer than the CA and

GO systems but is slightly better than the SO.

82



DETECTION CURVES FOR MLD SYSTEMS WITH A SINGLE INTERFERER
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Figure 39. NILD Probability of Detection with a Single Interferer
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DETECTION CURVES FOR MLD SYSTEMS WITH TWO INTERFERERS
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MLD and OS PROBABILITY OF DETECTION CURVES
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2. Clutter Edges

In considering the clutter edge problem, one would intuitively expect the OS

CFAR performance to be relatively insensitive to edging. This is true only when the

clutter returns have slowly varying amplitudes or appear in contiguous patches. The

ability to handle these edges (such as weather clutter) are detailed in Figure 42. In this

figure the OS system is able to handle the contiguous patch of sea clutter. Unfortu-

nately, OS CFAR can not handle random clutter spikes as well. This is caused by clutter

being found in the cell under test while the representative cell (K) is in the clear. This

inevitably leads to an increase in the false alarm rate.

3. Multiple Targets

In general, the presence of one or more interfering targets among the reference

cells cause the adaptive threshold to increase erroneously in the MLD family. In OS

CFAR, this increase is relatively small resulting in a superior performance as compared

to the MLD processors. As always, the OS processor performance is highly dependent

on the value chosen for K. An optimum OS system is one where K = M - J, where J

is the a priori known number of interferers. Figure 43 displays the inherent strengths
of OS CFAR as compared to the multiple target handling capability of the SO (shown

to be the best MLD system with interferers) The figure displays probability of detection
versus SNR for envelope approximation systems. As shown, the OS system is favorably

compared to the SO CFAR system. Both the OS and SO systems can easily handle two

interferers with little additional CFAR loss.

To further stress the performance of a properly designed OS system Table 7

details the detection probability losses and relative CFAR loss of square law OS and CA

detectors due to J interferers. In this table, both schemes use a false alarm rate of 10-4

and 64 total reference cells with a SNR of 20 dB for both the primary target and the

interferers. The value of K is set at 54, allowing for a total of 10 interferers prior to

system degradation. As expected, with no interferers, the CA system is superior. How-
ever, once interferers are introduced into the system the loss in probability of detection

and the relative CFAR loss of the CA system are dramatic as compared to the robust

OS detector.

As previously described in Chapter IV, the OSGO and OSSO are direct

descendents of the OS system. In terms of comparison, OSGO CFAR has all the ad-

vantages of the standard OS system in nonhomogeneous clutter and in multiple target

situations with a negligible CFAR loss in the benign environment. Of importance is that

the OSGO system requires only half the processing time that the conventional OS sys-
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OS CFAR IN CLUTTER EDGING
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Figure 42. OS CFAR In Clutter Edges

87



DETECTION CURVES FOR OS AND SO WITH TWO INTERFERERS
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PROBABILITY OF DETECTION CURVES FOR RANK ORDERED FAMILY
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Table 7. MULTIPLE TARGET EFFECTS ON CA AND OS CFAR

J OS P, CFAR Loss (dB) CA P, CFAR Loss (dB)
0 0.851 0.71 0.858 0.48
1 0.845 0.90 0.693 4.35
2 0.838 1.11 0.560 6.41
3 0.830 1.39 0.452 7.85

tems requires [Ref. 29]. Concerning the OSSO system, its only advantage is that it too

requires less processing time yet it has much higher loss than the OS system and behaves

poorly in the non-homogeneous situation. These conditions generally make the OSSO

system a poor detector choice. Figure 44 shows the P, curves for all the envelope ap-

proximation rank ordered devices. These Monte Carlo curves were generated at a false

alarm rate of 10-4. As shown, the OS system with a representative value of K = 20 is

only slightly superior to the OSGO system with K = 10. The OSSO system, also with

K = 10, yields the poorest system performance in this noise only environment.

From the results obtained so far, a clear conclusion of the OS system perform-

ance versus the MLD detectors can be drawn. Though the OS CFAR exhibits some

additional loss of detection in the homogenous noise background, its far superior per-

formance in multiple target environments makes this a seemingly desirable system. Of

course, the proper value for K must be chosen to ensure these robust results. This

generally requires a priori information not generally available, making these systems

theoretically superior but operationally sub-optimum performers.

D. CENSORING SCHEME COMPARISON

The CMLD and TM schemes will be considered together since they are both cen-

soring schemes that imply some required a priori knowledge to avoid unwanted samples.

With this knowledge, the TM and CMLD censoring points would result in near equal

optimal system performance. As previously mentioned, the value of K2 in the TM

scheme (upper censoring point) plays the crucial role in determining detector perform-

ance. The non-zero K2 (TM) or K (CMLD) values dictated by robust detector per-

formance in the multiple target environment conflicts with the requirement to maintain

the false alarm rate in regions of clutter power transitions. A near zero value for K2 is

necessary for this case.
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1. Homogeneous Noise

In the homogeneous environment, TM and CMLD detectors overall perform-

ance is better than that of a properly designed OS system and performs nearly as well

as a MLD system [Ref. 36].

Referring back to Figure 44, the CMLD and TM systems show near excellent

performance in the noise only environment. In these curves the CM LD system censors
two of the largest ordered cells and the TM censors the two largest and the two smallest.

As shown in this 10-' case, CMLD and TM outperforms the OS system by approxi-

mately 0.5 dB and is nearly equal to the optimum CA architecture.

2. Clutter Edges

The clutter edge problem for the CM LD and TM system varies directly with the

censoring points chosen. As previously mentioned, a small censoring point may degrade

the detection performance since high power clutter samples mask the target in the test

cell. As always, the inverse problem of over censoring, results in additional CFAR loss.

Since it is recognized that the GO system is the superior M LD system in clutter, it will

be compared with the two censoring schemes. Himonas [Ref. 21] has shown that in high

clutter power transition areas TM CFAR with K I = 0 and K2 = 4 yield almost ideni-

tical performance with that of a GO system when the actual number of clutter cells is

four. The performance worsens however, as the number of actual clutter cells increases

or decreases away from the preset values of 0 and 4. For small clutter power transition

regions the detection performance of the TM (K I =0 and K2 = 4) system is actually su-

perior to that of the GO system by approximately 2 dB.

Figure 45 shows the envelope approximation TM CFAR system performance

in the sea clutter edge. Since the TM method sums all but the highest and lowest ranked

reference cells, its curve is similar to the CA CFAR curve under the same clutter edge

environment (Figure 36). As shown, the TM censoring scheme handles clutter edges

quite successfully.

3. Multiple Targets

In a multiple target situation, prior knowledge of the number of interfering tar-

gets will result in superior performance of the TM and CMLD systems. As always,

system performance decreases rapidly with an improper choice of censoring points.

Figure 46 clearly proves this point. The envelope approximation CMLD CFAR system

used in this simulation censors the two highest ranked reference cells. This enables the
system to handle up to two interferers. As shown, the CMLD system with no interferers

performs only slightly better than the CMLD system facing two interfering targets.
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TM CFAR IN CLUTTER EDGING
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Figure 45. TM CFAR in Clutter Edges
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However, once the quantity of interferers becomes greater than two, system performance

suffers greatly. As shown, the CMLD system with four interferers shows a drastic re-

duction in capability. Figure 47 details the CMLD CFAR loss as a function of the

number of interferers relative to the optimum Neyman-Pearson detector. In this plot,

a CMLD system with N = 32, P, of 0.9 and a designed false alarm rate of 10-' is de-

tailed. The CFAR loss shown is a result of the increase in false alarm probability caused

by improper estimates of the actual number if interferers present. For example, if the

actual number ofinterferers is four (the x axis) and our system is designed to handle two

interferers (selecting the curve labeled 2), a CFAR loss of approximately 1.3 dB (read

off the y axis) occurs.

4. Conclusions

The performance of the censoring CFAR systems are robust in all operating

scenarios as long as the proper censoring points are chosen. When improperly selected,

system performance degrades intolerably. In actual operating environments, these

CFAR systems would possibly result in unacceptable detection and false alarm rates due

to a lack of a priori information.
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DETECTION CURVES FOR CMLD CFAR WITH TWO AND FOUR INTERFERERS
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94



3.0

i Actual mashr of

IJ.O l ,, it ll "1 IIlutelrlelreri {Jil * -)

-1.0

-2.0 3

-igitre 47. CFAR Loss for CMLD

95



VI. ENVELOPE APPROXIMATION RESEARCH

A. INTRODUCTION
As discussed earlier in Chapter Two, the input to a CFAR system is often the en-

velope detected in-phase (1) and quadrature (Q) channels of the baseband signal

(R = + Q2 ). Since the digital computation of the square root of the sum of squares

of the quadrature components is complicated and time consuming, various approxi-

mations to this operation have evolved. One less complex method of I and Q detection
using absolute values is the envelope approximation method where the input is estimated

as

R=ax max{I, I QI +bx rmin{ I I, I Q . 64

In this calculation, a and b are simple scaling coefficients.

The purpose of this chapter is to examine the performance difference this type of

detector has on CFAR processors for seven different scaling factors. This examination

uses a GO CFAR device. Results for the envelope approximation GO CFAR processor
in terms of probability of false alarm [Ref. 371 and probability of detection [Ref. 38] are

shown. The a and b multipliers are listed in Table 8 along with the average error and

mean square error for the seven approximations. In the first five approximations, the

multiplying coefficients are either one or simply binary fractions. The sixth approxi-

mation was designed to have zero average error which simultaneously minimizes the
variance of the error. The last approximation was designed such that the end point error

equals the absolute value of the peak error in the region 0 < 0 < n•,4 [Ref 371,[Ref.

51.

B. PROCEDURE AND RESULTS
Monte Carlo simulations were created to test the seven scalar combinations listed

in Table 8. The envelope approximation results have been devised for the six cases N
- 2, 4, 8, 16, 32, and 64. The threshold multipliers used in these simulations were taken

from Paces results to ensure a false alarm rate of 10-4. Table 9 lists these threshold

multipliers. Figure 48 shows the P,. curve versus Threshold Multipliers. Shown are the

seven combinations plotted along with the j + Q2 results. Figures 49-54 detail the

resulting detection probabilities versus SNR . As detailed in these performance curves,
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Table 8. SCALING FACTORS

Case a Scalar b Scalar Average Error Mean Square Error

1 1.0 1.0 -27.3 30.0
2 1.0 0.5 -8.68 9.21
3 1.0 0.25 -0.65 4.15
4 1.0 0.375 -4.02 4.76
5 0.96875 0.375 -1.20 2.70
6 0.948 0.393 0.00 2.33
7 0.96043 0.39782 -1.30 2.70

the a = 1.0 and b = 1.0 case yields the highest system detection performance and the

lowest P., for a given threshold multiplier. The a = 1.0, b = 0.25 yields the poorest

performance.

Table 9. THRESHOLD MULTIPLIERS AT 10-4 PFA

N1 CASE 1 CASE 2 CASE 3 CASE 4 CASE 5 CASE 6 CASE 7
2 12.20 13.40 16.60 14.40 14.30 14.00 14.1
4 5.90 6.50 7.80 7.00 6.90 6.80 6.80
8 4.40 4.70 5.50 5.05 5.05 4.95 4.95
16 3.90 4.10 4.70 4.32 4.35 4.30 4.30
32 3.70 3.90 4.30 4.05 4.05 4.01 4.01
64 3.60 3.80 4.20 3.95 3.95 3.90 3.90

C. CONCLUSIONS

A clear conclusion can be drawn from this study of the envelope approximation

scaling coefficients. In all cases, a = 1.0 and b = 1.0 yields the best detection per-

formance. The next chapter uses this information and presents a new CFAR architec-

ture that overcomes the inherent deficiencies of the architectures examined previously.
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PROBABILITY OF DETECTION CURVES - GO CFAR N -4
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VII. EXCISION GREATEST OF (EXGO) CFAR

A. INTRODUCTION

As presented throughout this thesis, numerous CFAR architectures have been de-

veloped to balance the conflicting goals of maintaining a high detection probability while

enjoying a low false alarm rate. As shown, this difficult task is magnified in the presence

of interfering targets and ECM. In this chapter a new CFAR device call 'Excision

Greatest Of" (EXGO) will be presented. This system was designed to maintaining su-

perior performance under clutter edge, multiple target and jamming environments. The

concept of excising large interferers was initially introduced by Goldman and Bar David

[Ref. 39). for their cell averaging scheme.

B. SYSTEM DESCRIPTION

A schematic diagram of the proposed EXGO CFAR detector is shown in Figure 55.

The EXGO processor uses envelope approximation to detect the inphase (1) and

quadrature (Q) components of the signal. Scalar values of a = I and b = I are used

since they have been shown to most closely match the results of a true envelope detector.

Two additions to the standard GO MLD are shown in Figure 55. The first addition is

the excision logic, and the second is the extended leading and lagging reference cells

(shown with hashed lines).

1. Excision Logic

The purpose of the excision logic is to compare the relative magnitude of all

utilized reference cells to an adaptive voltage threshold level (V,,). The excision logi. is

shown in detail in Figure 56. The threshold level is the product of a preset scalar value

(T,) and the continuously updated running system noise average (R) given by

k

R =J=1 65k

where x(j) is the reference window input and k is the total number of inputs into the

system over time. Thus, the initial threshold level is set as

V11= R x T1 . 66
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Figure 55. EXGO Schematic

If thic magnitude of any individual reference cell is greater than V,,, an interfering target

im assumed to be present in that cell and therefore ignored from further use in the GO

process. For example, with T, = 2, any reference cell that is greater in magnitude than

twice the system noise average will be discarded from further GO processing. If the cell

is less than twice the running noise level, the reference cell is then processed in a normal

(;() fashion. The selection of a proper threshold multiplier, T, is important. With too

low a threshold, proper noise samples will be excised from the system, thus increasing

the ([FAR loss. Setting T, too high will cause some large interfering targets to pass the

excision logic and thus contanminate the noise power estimate and degrade the probabil-

ity of detection. A binary integration at the output of the excision logic counts the

number of threshold crossings.

The EXGO architecture takes special precautions in order to maintain the

proper false alarm rate in the presence of clutter edges. When at least one entire leading

or lagging reference cell window is fully contaminated by clutter (recognized by greater
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than 16 excisions), the system adapts by using the clutter cells to determine the overall
system threshold level (Va). Thus, rather than excising the clutter, it is used to properly

adjust the voltage threshold to maintain the false alarm rate. This is the same method

employed by the GO system.

2. Extended Range Cells

The hashed lines in Figure 55 show an additional 16 cells straddling the original

16 leading and lagging reference cells. The additional cells are used only when a preset

number of cells are excised from processing (indicating the possible presence of jammers)

or when clutter edges dominate a reference window. This is the output of the binary

integration. In general, only a marginal decrease in CFAR loss is obtained when going

from a 32 to 64 cell system. This processing cost is well worth the effort however, when

the system is under attack from multiple false target ECM systems. Thus, when the false

target jamming is detected or when immersed in clutter, a full 64 cell system is engaged

into the EXGO processor to maintain robust performance.

False target jamming (resulting in the 64 cell system) is declared by the excision

logic once some predetermined number of excisions take place. For example if between

eight and sixteen excisions take place among the original 32 leading and lagging cells, the

system declares false target jamming. Since system performance of a standard 32 cell

s-ystem is seriously degraded when high excision rates are used, the reference windows

are expanded to the full 64 cell system. Thus, if every fourth cell contains a false target,

the 64 cell system would excise 16 cells yet still maintain 48 cells for noise estimation.

3. System Operation

Other than the extended reference cells and the excision logic architecture, the

EXGO processor behaves exactly as a GO CFAR. After the cells pass though the ex-

cision logic, all remaining cells are summed by neighborhood and normalized by the

proper number of non-interferer cells (ni, n2). The resulting values, yl and y2 are then

input to the 'GO' logic for determination of the largest value. The 'GO' output is then

multiplied by the threshold multiplier T2, yielding a comparator threshold voltage, Va.

The cell under test is then compared to this value. If the test cell's amplitude exceeds

Va then a target is declared.
When the system is in the clutter edge mode, the normal 'GO' process contin-

ues. Since the clutter cells are purposefully passed through the excision logic, they in-

evitably become the 'GO' selection yielding the properly inflated adaptive threshold level

that maintains the false alarm rate.
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C. PERFORMANCE ANALYSIS

As a member of the GO family, the EXGO detector maintains the key advantages

of GO logic. The EXGO system has the advantage of low CFAR loss in the homoge-

neous environment, but more importantly maintains a GO systems ability to control the

false alarm rate in the presence of a clutter edge. In this analysis, we will show that the

l-X(;O system clearly overcomes the GO system's inherent vulnerability to multiple

target situations. The price paid for this significant improvement is a small increase in

system complexity and an additional CFAR loss (: 0.1 dB) in homogeneous environ-

ments caused by excising legitimate noise samples. In addition, problems could occur

when the processor is in a clutter region and multiple false targets appear.

The input noise samples to the EXGO are normally distributed N(0,1). The Monte

Carlo probability of false alarm versus T2 is shown in Figure 57. Figure 58 shows tile

probability of detection curves using the threshold multipliers that ofler false alarm rates

of 10-2, 10-4, and 10-6. Excision logic threshold multiplier (TI) was chosen to be three

108



times the running average noise level for these simulations This level led to an excision

rate of approximately five percent of the input noise samples.

Figure 59 shows the ability of the EXGO system to handle the clutter edge problem.

Adaptive level I (excise level) and adaptive level 2 are detailed in this figure. As shown,

adaptive level 1 is higher than almost all the noise only peaks, yet is continually crossed

in the clutter region. This graphically shows why excisions do not occur once the system

recognizes that it is in a clutter edge. Adaptive level 2 shows the ability of the system

to handle both the leading and lagging edges of this simulated sea clutter; thereby

maintaining the false alarm rate.

System operation in the multiple target environment is shown in Figures 60 to 65.

In each of these plots, a P,, 10-4 was chosen along with T, = 3. All interfering targets

have a SNR of 15 dB. In Figure 60, the EXGO system P, curves show relatively no

change between the two interferer scenario and the noise only environment. Figure 61

contrasts these curves by displaying the dramatic loss in capabilities of the standard GO

CFAR with the same two interfercrs. For example, when the SNR of the primary target

is 12 dB, the EXGO system maintains a detection probablity of 0.72 whereas the GO

CFAR yields a detection probability of 0.28. Figure 62 and 63 shows the loss in per-

formance caused by four interfering targets and Figure 64 and 65 shows the performance

caused by six interferers. In these plots the EXGO performance remains robust facing

additional interferers whereas the GO system degrades significantly.

To demonstrate the EXGO system in a multiple false target situation, 15 dB inter-

feres were injected into every fourth reference cell window. In this situation, the ex-

tended leading and lagging cells are engaged since between eight and sixteen excisions

occur. This performance is shown in Figure 66. The resultant EXGO system has only

and additional 0.2 dB CFAR loss whereas the GO CFAR performance is extremely poor.
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EXGO CFAR PERFORMANCE IN CLUTTER EDGING
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Figure 59. EXCO Performance in Clutter Edges
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Pd Curves for EXGO CFAR -> Zero vs Two Interfering Targets
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Figure 60. Effect of Two Interferers on EXGO CFAR
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GO CFAR vs EXGO CFAR With Two Interfering Targets
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Figure 61. EXCO vs GO w~ith Two Interfering Targets
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Pd Curves for EXGO CFAR -> Zero vs Four Interfering Targets
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FIg.re 62. Effect of Four Interferers on EXGO CFAR
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GO CFAR vs EXGO CFAR With Four Interfering Targets
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rigure 63. EXGO vs GO with Four Interfering Targets
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Pd Curves for EXGO CFAR -> Zero vs Six Interfering Targets

0.9 ... No Interferer per ormance-.

0 .6¶ . . .. . .. . . .. . . . . . . . . .

L 0 .6 .. ... ...... ....... ...... ..... .... ....... ....

~0 .4 . . . . . .. . . . . .. ... . .. . . .. . . . . .. .. . . . .. . . . .. . . . . . .. . . . .

6 interferer performanice

0L.1

0 2 4 6 8 10 12 14 16 1
SNR in dB Pfa - 10-4

Figure 64. Effect of Six Interferers on EXGO CFAR
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GO OFAR vs EXGO CFAR With Six Interfering Targets
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Figure 65. EXGO vs GO with Six Interfering Targets
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EFFECTS OF FALSE TARGET JAMMING IN EXGO VS GO CFAR SYSTEMS

EXGO - NO FALSE TARGETS
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Figure 66. EXGO vs GO In Multiple False Target Jamming
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D. SUMMARY

The EXGO CFAR processor shows significant improvements over the conventional

GO system. The price paid for these improvements are in the form of a small additional

CFAR loss in the homogeneous environment due to excising a small number of legiti-

mate noise samples. Also, additional detector complexity is required as compared to the

standard mean level detectors. Although complex, the EXGO system is easily imple-

mented and performs faster than many of the rank ordering system that require cell

sorting routines.

The introduction of the extended reference cell concept enables a system to be

adaptive to its real time operating situation. The ability to shift between 32 or 64 total

reference cells enables the system to conserve its resources in the benign environment

and increase its capability in large multiple target/false target jamming situations. As

shown, even at relatively high excision rates, The EXGO adaptive performance is supe-

rior.
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APPENDIX

I lie lbur following programns are the G0 CFAR and IEXGO CFAR probability of

detection and probability of false alarm curve generating code. In all programs an En-

%cl;ope Approximation detector is uscd.
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/* THIS PROGRAM IS A MONTE CARLO SIMULATION Or A 'GO'
/ * CF AR ALGORITHM. THIS PROGRAM PRODUCES THE PRO&- /
/* ABILITY Of FALSE ALARM DATA POINTS TO BE HITLAB "

/* PLOTTED.

#include <Stdio.h>
*include 4math.h>
lincludt <3tdiib.h>
#include <time.h>

*define PI (double)(4.0*atal(1.0))
#define TOTRV 1000000

int z, first,overcount,supercount,randhold(21;
int i.t,n.
double threshold,a, b;
double max,cosupval, roata, window 133] ,numeella;
double percen, xl,x2, ul, u2, ldqval, ldgnorm. laqval, lagnor.;

wain (

FILE *writer;

a-i; b-i;
compvai - 0.0;
overcount-0;
nwaceills16.0;
supercount-0;

if ((writer-fopen(g(opfa.dat', wl))-NULL)

print! ("no can do");
exit (1);

1* THIS LOOP ITERATES THE THRESHOLD MULTIPLIER F'ROM 0
/I THOUGH 5.5. 100 DATA POINTS RESULT. .

for(t-0;t<150;++t)

first-0, percen-0. 0;
overcourat-D; supercount-0;
max-0 .0;

threshold-I (float)t)IiO.0;
srandom(l);

P THIS LOOP ITERATES THROUGHT THE 10 MILLION RANDOM '
/* VARIABLES TO GIVE ACCURACIES DOWN TO 10-7.

while (overcount<TOTRV)

idqval-0.0; laqval-0. 0;
for (i0; i<2;++i)

randhold(i) - randaom;
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/* BUILDING THE RANDOM VARIABLES TO BE UNIFORM.

ul-( (double)ranclhold[0J)/2147483647;
u2-( (double) randhold1i))/2141483647;
xl-sqrt ((-2) loq (ii)) cos (2*Plu2);
x2-sqrt ((-2) loq(ul) ) sin(2*Plu2);
rcdata - fab3(xl)*a~fab3(x2)*b;

/* INITIAL REFERENCE WINDOW LOAD UP. C

if (overcount '33)

window[32-overcountl - rcdata;
overcount +-I;

else

/* SLIDING THE REF WINDOW AND INPUTTING A NEW R.V.

for (n-O~n<32;++n)

window(32-nJ-window(31-n);

window (01-rcdata;
overcount+-l;

/* su?44NG THE LEADING AND LAGGING REF CELLS TUEN
/* NORMALIZING BY THE NUMBER OF CELLS. C
/*.t... eeCC.. eCCC~CCtt~~~eteCC~t

for (n-Os n<16;++n)

ldgval+-window (n I;

for (n-17;n<33;++n)

lagval+-window~n];

lagnorm-lagval /numcells;
Idgnorm-ldgval/nuzncell3;

/* FINDING THE GREATEST OF VALUE AND USING IT TO DET- '
/* ERMINE THE ADAPTIVE THRESHOLD VALUE. THE GO IS MULT-*/
/* IPLIED WITH THE SCALING FACTOR. IF THIS VALUE IS *
/C LESS THAN THE TEST CELL, A TARGET IS DECLARED).

if (ldgnorm> lajn orml

max-ldgnorm;

else

max-lagnorin;

cornpval-threshold~imx;
if (window 116) >compval)

3upercount+-1;
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Percen-t (double) aupercount) /(TOTRV-3;
fpri~ntft(writer,-f %1 %1 1O!\n ,threshold, percen);

fclose (writer);
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/* THIS PROGRAM IS A MONTE CARLO SI)WIATION OF A GO0 CFAR '
1' ALGORITHM. THIS PROGRAM PRODUCES THE PROBABILITY Or DETECTIOSI/
/ * DATA POINTS TO BE MATLAD PLOTTED. /

# include <stdio . h
#include <math.h>

*define NCELL, 20000
#define SAMPLE (double) (1.0/200.00)
#define PI (double) (4.O*atan(l.0))

#define TOTRV 10000
#define THRESHOLD 3.65
#define SNRFAOI4 -10.0
#define SWRTO 30.0

double ppl INCELL),pp2 [NCELL),pp4 (NCELLI , pS NCELLI , pI6 INCELLI;
double x~ccc,ccO,cclt,cclb,ddl,dd2,pl~p2,snm;,
double suavar, summnan, swn, noisepr;

int avercount, randhold (3),n,1. supercount,-t;
double snr. amp,nuacells, a.b, ldgvel. laval, qonoka;
double var,zl,x2.ul,u2,u3,31331.Q133),adaptive~percen;
double phi... cut, go. threshprime;
double maxl,max2,aax3,ainl,min2,min3;-

FILE *writer;

a-1.0; b-1.0; adaptive-0.0; numcells-16.0;
overcount-0;
supercount-0; 3uiwvar-0 .0;

threshprime-(C(numcells-l .0) TBRESHOLD) /(numcells-THRESBOLD);

for(i-0; iNCELL;++i)
I~ /* PDF for test cell no13e*/

x-(double) iSAMPLE;
ccO--pow(x,2.0)/(2.O*pov(b,2.0));
cclt-pow(a,2.0)*pow(x,2.0);
cclb-2 .0'pow(b,2.0) *(pov(a,,2.0)+pow(b, 2.0));
ccc-ccO+ (cclt/cclb);
ddl-a*x/ (bsqrt (2 .0) sqrt (pow(a,2 .0) 4pow (b, 2.0)))
dd2-b~x/ (asqrt (2.0) .qrt (pow (a, 2.0) +pow (b, 2.0)));
pl-*b~exp (ccc) aqrt (P1/2 .0) erf (ddl) / (qrt (pow (a, 2.0) 4pov(b. 2.0)));
p2-a~bexp (ccc) sqrt (PI/2.0) erf (dd2) /(sqrt (pow (a, 2.0) +pow (b, 2.0)));
ppl[i]l-(4.0/(2.0*Pl*ab)) (pl~p2);
sum+u- (ppl (ii SAMPLE);
summan+-(ppl~i±PSAMPLE~x);
wumvar+- (ppl 1i1 SAMPLE~xx);

noisepwr-sumvar-pow (suzunean, 2.0);

if ((writer-fopen (gopd.dat", *) )-NULL)

printf (bad");
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/* THIS LOOP ITERATES THROUGH THE SNA RATIOS USED TO CREATE TAPTS*/
/*IN THE CELL UNDER TEST. WE INCREMET SNR BY 0.02 dB STEPS TO
/*ACHIEVE A SMOOTH PLOT OF SNR vs PROBABILITY Or DETECTION. '

a-SNPFROM;
while (s<-SNRTO)

overcount-O;
pereen-0. 0;
supercount-O;
qo-O.O;

/* HERE HE FIND THE VALUE OF SOME TARGTS AIPLITUDE. AWPLITUDE ZS-/
f* EOUA' TO THE SQUARE ROOT OF TWO TIMES THE SUR TIMES THE EST- *
/* IMA7 OF THE NOISE POWER. TEIS VALUE IS THEN ADDED TO TUE
/* NOISE ALREADY FOUND IN THlE CELL UNDER TEST. o

noisepwr-1 .0;
anr-pow(I0.0, (sf10.0));
amp-sqrt (2*noisepwr'snr);

srandoo(1);

/' THIS LOOP ITERATES THROUGH ALL THE RANDOM VARIABLES. O

while (overcount(TOTRV)

ldaval-0.0;lagvel-0.0;
for(!-0;i<3;+4i)

randholdli)-randomo;

/* BUILDING UP THE UNIFORM RANDOM VARIABLES O

ul-((double) randhold[0) )/2147483647;
u2-((double) randhold[lI)f2147483647;
u3-(C(double)randhold(21))/2147483647;
xl-sqrt ((-2) loq(ul) ) 0CO(2*PZ'u2);
x2-sqrt ((-2)10og(ul))Psin(2*Plu2);

phi- (PI/4)*u3;

/ * INITIAL REFERENCE WINDOW LOAD UP AND SLIDING OF THE REP CELLS. /

if (overcount<33)

I [2oecut-x)
Q132-overcountl-(xl);

overcount+-l;

else

for (n-0; n<32; ++n)

I [32-nJ-1131-nl;
Q(32-nI-Q(31-n];

1101-Wi);

overcount4-l;
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/* USING AN ENVELOPE DETECTOR, TIM CELL UNDER TEST VALUE IS FOAND*/
/*......*........tl...

umax-fabs (I(1614 (aap~cos (phi)));
minl-fabs (011614(amp~sin (phi) ));

else

maxi-fabs (O 61+ (amW~sin (phi)));
auni-fabs CI(1614 (anp~cos (phi) ) )

cut-almaxl +b~minl;

/ * SUWEING THE LEADING AND LAGGING CELLS FOR ' GO' DETmEINATION.

for (n-O; n<16; 4+n)

if(fabs(I In) )fabs(Ojnj))

max2-fabs (I(n]);
min2-fab (0(n));

else

max2-fabs (0(n));
min2-fabs ( ());

ldcoval+-ainax2+b~min2;

for (n-17;n<33; ++n)

if (tabs (I1n) >fabs(Q(nD))

m~ax3-fab (I1(n));
min3-fabs(Q~nJ);

else

max3-fabs (0(n));
mtin3-fab (I1n));

lagval+-a max3+bmsfin3;

if (ldgval>laqval)

go-ldgjval;

else

qo-laqval;

/ * FINDING THE ADAPTIVE THR.ESHOLD LEVEL. IT IS TUE PRODUCT OF THE '
/* NORM4ALIZE 'GO' AND THE SCALING FACTOR. THE CELL UNDER TEST IS THEN1
/* COMPARED TO THIS LEVEL TO DETERMINE IF A TARGET IS DETECTED. /

qjonorop-go/numcel1 s;
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adapt ive-TNESlOLDgOflorm;

it (Cut')-adaptivo)

supercount 4-1;

percen- ((double) aupercount)/I(TOMh-31);
fprintf (writer. 'tf %11l.l~t\n",3,perc~n);
9-9+.2;

fclos@ (writer);
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i/ THIS PROGRAM IS A NOWST CARLO SIMUfLATION OP A CFAR &LOORITWI
/ * IRE ALGOMITSM IS TU WYNORS OWN MI1D 15 CALLED '3260' MUICE
i * IS SlOP? FOR EXCISION GREATEST Or. ?NIS PROGRAM PRODUCES TEX*/
/ * PROBAS IL!?? OF FALSE ALAN' DATA POInTS TO SEZ NRTLkB PLOTTE *

#include <Stdio.h>
tinclud* cmthi.h>

Odefxne tXCISELVL 3.0
*Gef ine TOTALRV 1000000
#def ine PI (double)(4.0*atanhl.0))

int overcount. aupercount~curcouamt.lidgeount. lagcount. rsndhold12l;

double ab,x2,x2,ul,u2,go,115,1651,QIa~deptlwe,threskmult.lagvalI
double ldqval. cut, curest, curleatnmo. eaclsemi, lagnorm ldgnota;
double percen. cluttsvm. cluttlevel;

FILE *writer;
a-1.0; b-1.0;

if I(vriter-fopen(Ofar2.dat*, Ow*))--NULL)

printf (fu");
exit (1);

1* THIS LOOP ITERATES TUE THRESHOLD MULTIPLIER FROM 0 TUROUG 5. 5.*/
I' 550 DATA POINTS AESULT. '

for(t-0;t<126;++t) /* Threshold mumltiplier loop from T 0 to 5.21

percen-0.0;
overcount-Os
curcount-0;
suPercount-0;
0o-0.0;

Y-0;
curest-0 .0;
exciseval-lO .0;

thr03hmult-( (float)t/25.0);

3random(l);

I' THIS LOOP ITERATES THROUGH THE TEN MILLION RANDOM VARIABLES TO I
/* PRODUCE PFA DATA WITH AN ACCURACY DOWN TO 10-7.

vhile (overcount(TOTALRV)

Idgrval-0 .0;
legval-0 .0;
lagcount-0;
ldqcount-0;

for (i-0;i<2;++i)

randholdliI-randomO);



/* ........... o.....**4...n44.4404444444*4040444oe4*444444
4
o

/* BUILDING THE RANDOM VARIABLES TO BE UNIFORM. */.. . . ........... o..4..........4o44...44*44.*40044444.4444444044/

ul-((double)rendUhold01) /21414834647;
u2-((double)randbholdil))/2147483647;
x]-sqrt((-2)*log ul))*cos(2*P?*u2);
x2-sqrt((-2) log(ul))*sin(2*PI*u2);

/" INITIAL REFERENCE WINDOW LOD UP. */

if(overcount<65)

1164-overcount]-xl;
0! 64-overcount I-x2;
overcount+-l;

else

/*SLIDING THE REFERENCE WINDOW AND INPUTTING THE NEW RANDOM 4/

/*VARIABLE. TUE IF STATZHNT IS TRUE ONLY TZRCOGN TUE FIRST */
/*REF WINDOW SLIDE. THIS STATEMNT ALLOWS rOR TUE INITIAL */
/*ESTIMATION OF TUE CURRENT NOISE. ONCE INITIALIZED, TUE ES- *ET

/*I MATE IS UPDATED WHN A NEW RANDOM VARIABLE IS INTRODUCED */
/*INTO TUE REFERENCE CELLS. */

for(n-0;n<64;++n)
I
I[64-n-I i63-n];
OI64-n]-O(63-n);
if(y--O)

I
curest+-fabs(I164-n])+fabs(Q[64-n]);
curcount +;

y-l;
I(0)-xl;
Q(01-x2;
overcount+-l;

/* UPDATING THE NOISE ESTIMATE WITH THENEWM RANDOM VARIABLE */
/* ONLY IF IS NOT RECOGNIZED AS AN ADDITIONAL TARGET OR J3. 4/

if(fabs(l(0j)+fabs((010)<exzcseval)

curest+-fab9(I(01)+fabs(Q(0I);
curcount+-l;

/° EXCISEVAL IS DETERMINED TO BE THAT ADAPTIVE LEVEL IN */
/* WHICH TUE REFERENCE CELLS ARE MEASURED AGAINST TO SEE /
/* IF THEY ARE NOISE VALUES OfR POSSIBLE INTERFERING 4/

/* TARGETS. EXCISE VALUE DETERMINED FROM THE CURRENT
/* ESTIMATE OF THE NORMALIZED NOISE. */

curestnora-curest/CUtCOUnt;
exciseval-(curestnormnEXCISELVL);

/- HERE THE LEADING AND LAGGING CELLS ARE SUMMED AS IN "/
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/* AS THEY ARE LESS TRAM TUE EXCISE VALUE -ELSE TNEX ARE/
/* IGNOXED.

for (n-1G;n<32; 44n)

if(exciseval>-fabs(lI n)).faba(Qinl))

ldgva1+-fabs (7(nD)+fabs (QjS I)
3dgcount+-1;

for (n-33;n<49; ++n)

if(exciseval>-fabs(lInJ )4fabs(QlnJ)))

laqval+-fabs (I n) 4.fabs (Olni);
lagcount4-1;

/*This code checks for false target generating wing '/
1* If more than some percentage of targets are excisedI
/- t is assnmned that ?TG rainin is occuring. In this

I' ease we assume that if 251 or >cells are excised than
/*we increase our excision threshold and expand our ref

/* cell summtion to 32432 in order to maintain our systm*/
I t performance at high excision rates

if(lagcount~ldgcount <- 24)

lagcount-O; ldgcount-O;
lagval-O. Osldqval-O.0;

if(laqcount~ldgcount <- 16)

for (n-O;n<64;+4n)

if (exciseval <- fabs (I [n] ) fbs (0(n)))

cluttcount+-1;
cluttsum4-fabs(I InJ I)+fabs (0InM)

cluttlevel-clutts~um/ ((double)cluttcount);
exciseval-EXCISELVL~cluttlevel;
cluttcount-0;
cluttsus-O. 0;

for (n-O;n<32; ++n)

if (exciseval>-fakb3(I (ni +fabs (Q(n)))

ldqrval+-fabs (I fn))+fabs (Q In));
ldgcount *-l;

for (n-33;nCE4; ++n)

if (exciseval>-fabs (I In))*fabs (0 nl)))
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laqval+-tabsa (n f1).fabs(Q~nl);
laqcount .- l;

/* TEE NOPMALIZED VALUES Or EITHER TEX 14X16 OR 32X32 ARZE/
/* DETERMINED. AT TMI POINT TRE GREATER Or VALUE WILL '
I * BE DETERMINED AND USED TO FIND) TUE SYSTEM ADAPTIVE W /
/ * THRESROWD LEVEL. '

lagnorm-laqvall ((double) lagcount);
ldqnorm-ldqvml/ ((double) ldgcount);

if (laqnora>ldgnorm)

qo- laqnowm;

else

qo-idgnorm;

adapt ive-threshMlt 
'903

/ ERE. WE FIND TUE VALUE OF TUE CELL UNDER TEST AND COMPARE IT-/
I * TO THE ADAPTIVE TUNESBOLD LEVEL. IF ?BE CUT IS GREATERt WE '
/ * INCREMENT SUPERCOUNT REFLECTING TARGET DETECTION.

cut-fab9(I [321 )4faba (Q(321);

if (cit>adaptive)

supercount+-l;

percen- ((double) supercount)/I(TOTALRV-65);
fprintf (writer. "tf %ll.l0f\n*,threahmult~percen) 3

fclose (writer);
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1 XX XX XX XXxx xxI
xxxxxx xx XX XX x xx xx/

xx xx XX XX x XX x1/

#include <stdio .h>
#include (aaath.h>

#define NCELL 20000
#define SAPWLE (double) (1.0/200.00)
#define PI (double) (4.0Oatan(1.0))

#define TOTRV 5000
#define THRESHOLD 2.42
#define SNRFROJ4 -10.0
#define SNRTO 30.0
#define EXCISELVL 3.0

int i, j, idelay,bool,boolcount~cluttcount;
double ppl INCELL] .pp2 INCELL) ,pp4 (NCELL) ,ppS(NCELL] ,ppl6INCELLJ;
double x,ccc,cc0,cclt,cclb,ddl,dd2,pl,p2,swn;
double sumvar, sunmmean. aunmm,noisepwr, cluttsui, Cluttlevel;

int overcount. randhold(33, n, aupercount, t, curcount, ldgcount, lagcount, y;
double snr,amup,a,b. ldgval, laqval,gonorm;
double xl,x2,ul,u2,u3,I(65],Q165Ladaptive,percen;
double phi, s, cut, go, curest, curestnorn, ldgnorm, lagnorm, exC13eval;
double maxl,max2,max3,mninl,m~in2,min3;

main U

FILE *writer;

a-1.0; b-1.0;
overcount-0;
supercount -0;
bool-0;
boolcount-0;

if ((wr~lter-fopen (exgo2pda.dat", v") )--NULL)

printf ("bad");
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I * 791 S OUTER LOOP ITER.ATES THROUGH 79! SUR VALUE RANGE SELECTED. '

O-SNRFROM;
while (a<-SNRTO)

overcount-0;
percen-0 .0;
supercount-0;
90-0.0;
Y-0;
curcount-Oi
curest-0. 0;
*xcisevel-10 .0;

noisepwr-1 .0;
anr-pov(l0.0. (9/10.0));
aMP-3qrt (2*noisepr~snr) 3

srandoaci);

1' THIS DINNER LOOP ITERATES THROUGH TRE RANDOM VARIABLES

while (overcount<TOTRV)

ldqval- .0; laqval-0. 0;
ldgcount-O; lagcount-O;
for(i-0;i<3;+4i)

randlioldtiJ-randosuo;

ul-( (double) randhold(0) )/2147493647;
u2-((double)randhold(li) /2147483647;
u3-( (double)randhold[2))/2147483647;
xl-sqrt ((-2)lIOg(ul))*co3(2'PI'u2),
x2-sqrt ((-2) loq(ul) I sin (2*P1'u2);

phift (P1/4) *u3;

/I INITIAL RErERENCE WINDOW LOAD UP AMD SLIDING ACTION '

if (overcount(65)

I1(64-overcountl-(xl);
0164-overcount1- (x2);
overcourlt+-1;

else

for (n-O;n<64;.en)

I 164-ni-I 63-ni;
01 64-n]-Of 63-nl;
if (y--O)

f
curest+-fabs(1164-ni)4fabs(Q164-nl);
curcount4-l;

Y-1;
I (OJ-xl;
0101 -x2;
overcour't4-l;
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" USING THE NEW RV TO ADJUST TEE EXCISE VALUE AVERAGE.'/
..... ... ............. # t tt... t**........... .

if(fabs(I [0)+fabs(IO[O)<exciseval)
i

curest4-fabs(I01)+fabs(QIOJ);
curcount+-1;

/" NORMALIZING THE RUNNING NOISE ESTIMATE AND TEEN /
/o FINDING TEE EXCISE VALUE BASED ON THAT ESTIMATE. // *t*Sgtt*S***ttttt*S*SttS**5t5******S*St**ttSSS***t5*tt*/

curestnorm-curest/curcount;
exciseval-(curestnormEZXCISELVL);

/° summing the lagging and leading ref cells that do not /
/* exceed the excision value. 0ool is used to count the /
/* total number is excisions fof the first run. This data*/
/- will help us decide on a propei EXCISELVL to choose so */
/° that very few data points are excised in a normal noise*/
/" environment

for(n-16;n<32;++n)

if(exciseval>-fabs(I~n])+fabs(oQnJ))
I

ldgval+-fabs (I h ) +fabs (Qini);
ldqcount+-l;

else
i

if(bool--O)
I
boolcount+-l;

for (n-33;n<49; ++n)
I

if(exciseval>-fabs(I n])+fabs(Q[nJ))
f

lagval+-fabs(I~n])+fabs(Qln));
lagcount+-l;

else
i

if (bool--O)
I
boolcount+=l;

/* False Target Jamming is checked here. If greater than
/* 25% of the data samples are excise FTG jamitng is assumed '/
/* We then reset the ldg and lagging sums to zero and recalc-*/
/" ulate based on 32X32 ref cells and a higher excision level*/
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it (lagcount~ldc~qouft<-24)

lagcount-Os ldqcount-O;
Idqval-C.O18lagvl'O.O;

if Claqcount+ldgcoufltc16)

for (nO; n(64; G+n)

if(exciseval<-faba (I nJlE labs (Qin)))

clutteount+-3;
cluttsum.-fabs(X (nj))faba (Qlnj);

cluttlevel-cluttaum/ ((double)cluttcount);
excieeval-EXCISELVL~cluttlevel;
cluttcount-O, cluttaum-O .0

for (n-O;n<32;+44 %)

if(eXCiseval>-fabs(IInI)+faba(Qknj))

ldqjvel+-feba (I(ni )+fab3(Q(n));
ldqcount+-l;

for (n-33; n(65; ++n)

it (exciseval>"fabs (lInj )+fab (0(nj)))

lagval+tfab (I (nj) +fabs (0 (nI;
laqcouflt+l;

I' NORMALIZING THE LAG AND LEADING REF WINDOWS THEN /
/* CHOOSING THE GREATER OF. THIS VALUE IS THEN USED TO *

I' DETERMINE THE ADAPTIVE THRESHOLD LEVEL.

laqjnorim-lagval/ ((double) lagcount);
ldqnormi-ldgval/ ((double) ldqcount);

if (lagnorm> ldqnorm)

qo-lagnorin;

else

It

1' HERE WE FIND THE VALUE OF THE TEST CELL AND THEN COMP-*/
/ * ARE IT TO THE ADAPTIVE THRSHOLW LEVEL FOR DETECTION. '

cut-fabs (1[321 + (aeu*C0(phi)))+fabs(Q 132) +(azp' sin (pbi)));
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if (cut>adaptive)

supercount+.1;

percen-( (double)3upercOUflt)/(TOTRV-65);
fprintf(writer,%kf %11.1Of\n",s.percen);
9-8+ .2;
bool+-l;

fclose (writer);
print f("td",boolcount),
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